精英家教网 > 高中数学 > 题目详情
6.在△ABC中,a,b,c分别为角A,B,C所对的边,若acosA=bcosB,则此三角形一定是(  )
A.等腰直角三角形B.等腰或直角三角形
C.等腰三角形D.直角三角形

分析 由条件利用正弦定理可得 $\frac{1}{2}$sin2A=$\frac{1}{2}$sin2B,化简可得 A=B,或 A+B=$\frac{π}{2}$,故△ABC是等腰三角形或直角三角形,从而得出结论.

解答 解:在△ABC中,∵acosA=bcosB,由正弦定理可得 sinAcosA=sinBcosB,即 $\frac{1}{2}$sin2A=$\frac{1}{2}$sin2B,
∴2A=2B,或 2A+2B=π.
∴A=B,或 A+B=$\frac{π}{2}$,即 C=$\frac{π}{2}$.
故△ABC是等腰三角形或直角三角形,
故选:B.

点评 本题主要考查正弦定理的应用,得到2A=2B,或 2A+2B=π,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)=x(1+alnx) (a∈R)
(1)若f(x)在[1,+∞)上是单调递减函数,求a的取值范围;
(2)设a=1,若k∈Z,且k(x-2)<f(x)对任意x>2恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若2π≥α≥0,sinα>$\sqrt{3}$cosα,则α的取值范围为[$\frac{π}{3}$,$\frac{4π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线y=(3a-1)x+a-1,为使这条直线经过第一、三、四象限,则实数a的取值范围是$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是各项均为正数且公差为d的等差数列,其前n项和为Sn,首项为a1
(1)当a1=1,d=2时,证明:{$\sqrt{{S}_{n}}$}为等差数列;
(2)求证:数列{$\sqrt{{S}_{n}}$}为等差数列的充要条件是d=2a1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合M={1,(m2-2m)+(m2+m-2)i},N={-1,1,4i},若M∪N=N,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列式子:
$\frac{1}{3}$=$\frac{1}{3}$;
$\frac{1}{3}$+$\frac{1}{15}$=$\frac{2}{5}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$=$\frac{3}{7}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+$\frac{1}{63}$=$\frac{4}{9}$;

则可以归纳,当n∈N*时,有式子$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+…+$\frac{1}{4{n}^{2}-1}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{lnx}{x}$,g(x)=xf(x)+$\frac{3}{8}{x}^{2}-2x+2$.
(Ⅰ)求函数y=g(x)的单调区间;
(Ⅱ)若函数y=g(x)在区间[ek,+∞](k∈Z)上有零点,求k的最大值(e=2.718…);
(Ⅲ)证明f(x)≤1-$\frac{1}{x}$在其定义域内恒成立,并比较f(22)+f(32)+…+f(n2)与$\frac{(2n+1)(n-1)}{2(n+1)}$(n∈N*且n≥2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义运算a?b为执行如右图所示的程序框图输出的S值,则$({2^-}^{{{log}_2}3})?({log_{\frac{1}{2}}}4)$的值为(  )
A.$\frac{7}{9}$B.$-\frac{8}{3}$C.4D.-4

查看答案和解析>>

同步练习册答案