精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{{2}^{-x},x≤0}\end{array}\right.$,则f[f(-4)]=4.

分析 利用分段函数,逐步求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{{2}^{-x},x≤0}\end{array}\right.$,
则f[f(-4)]=f(24)=$\sqrt{{2}^{4}}$=4.
故答案为:4.

点评 本题考查函数值的求法,考查分段函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.“x2+2x-3=0”是“x=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$a={log_{\frac{1}{3}}}\frac{1}{2}$,b=log23,c=log34,则(  )
A.a>b>cB.b>a>cC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x-3|+|x+7|.
(1)解不等式:f(x)<16;
(2)若存在x0∈R,使f(x0)<a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的顶点A、B的坐标分别为(-$\sqrt{3}$,0)、($\sqrt{3}$,0),C为动点,且满足sinB+sinA=$\sqrt{2}$sinC.
(1)求点C的轨迹L的方程;
(2)设M(x0,y0)是曲线L上的任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交曲线L于点P、Q.
①若直线OP、OQ的斜率均存在,并记为k1,k2,求证:k1k2为定值;
②试问OP2+OQ2是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,点F1(0,-$\sqrt{2}$),F2(0,$\sqrt{2}$),动点M到点F2的距离是4,线段MF1的中垂线交MF2于点P.当点M变化时,则动点P的轨迹方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{2}=1$B.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{2}$=1C.x2+y2=1D.$\frac{y^2}{4}-\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$\frac{2i}{1-i}$(i是虚数单位)的虚部是(  )
A.-1B.2C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$=(1,3),($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{b}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2ccosB=2a-b.
(Ⅰ)求角C的大小;
(Ⅱ)若$c=\sqrt{3}$,b-a=1,求△ABC的面积.

查看答案和解析>>

同步练习册答案