精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2ccosB=2a-b.
(Ⅰ)求角C的大小;
(Ⅱ)若$c=\sqrt{3}$,b-a=1,求△ABC的面积.

分析 (Ⅰ)由题意和余弦定理可得a2+b2-c2=ab,再由余弦定理可得cosC,可得角C;
(Ⅱ)由已知数据和余弦定理可解得ab的值,代入三角形的面积公式可得.

解答 解:(Ⅰ)在△ABC中,由2ccosB=2a-b和余弦定理可得$2c\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=2a-b$,
∴a2+b2-c2=ab,∴$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{1}{2}$,
又C∈(0,π),∴$C=\frac{π}{3}$;
(Ⅱ)∵$C=\frac{π}{3}$,$c=\sqrt{3}$,∴由余弦定理可得a2+b2-ab=3,
又∵b-a=1,∴a2+a-2=0,∴a=1或a=-2(舍去),
∴a=1,b=2,$c=\sqrt{3}$,
∴△ABC的面积S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{2}$

点评 本题考查正余弦定理解三角形,涉及三角形的面积公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{{2}^{-x},x≤0}\end{array}\right.$,则f[f(-4)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设椭圆的标准方程为$\frac{x^2}{9-k}+\frac{y^2}{5-k}=1$,若焦点在x轴上,则实数k的取值范围是(  )
A.k>5B.5<k<9C.k<5D.k>9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C中心在原点,焦点在坐标轴上,且该椭圆经过点($\frac{1}{2}$,$\frac{\sqrt{6}}{2}$)和点$(\frac{{\sqrt{2}}}{2},-1)$.求
(1)椭圆C的方程;
(2)P,Q,M,N四点在椭圆C上,F1为负半轴上的焦点,直线PQ,MN都过F1且$\overrightarrow{M{F_1}}•\overrightarrow{Q{F_1}}=0$,求四边形PMQN的面积最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c.若sin(A-B)+sinC=$\sqrt{2}$sinA.
(Ⅰ)求角B的值;
(Ⅱ)若b=2,求a2+c2的最大值,并求取得最大值时角A,C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)为奇函数,当x≥0时,f(x)=log2(x+l)+m,则f(1-$\sqrt{2}$)的值为(  )
A.-$\frac{1}{2}$B.-log2(2-$\sqrt{2}$)C.$\frac{1}{2}$D.log2(2-$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知全集U={y|y=x3,x=-1,0,1,2},集合A={-1,1},B={1,8},则A∩(∁UB)=(  )
A.{-1,1}B.{-1}C.{1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,那么折痕长度l取决于角θ的大小,探求l,θ之间的关系式,并导出用θ表示l的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(-3,5),用$\overrightarrow{a}$、$\overrightarrow{b}$线性表示$\overrightarrow{c}$.

查看答案和解析>>

同步练习册答案