精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C的对边分别为a,b,c.若sin(A-B)+sinC=$\sqrt{2}$sinA.
(Ⅰ)求角B的值;
(Ⅱ)若b=2,求a2+c2的最大值,并求取得最大值时角A,C的值.

分析 (Ⅰ)由已知及三角形内角和定理,两角和与差的正弦函数公式化简可得2sinAcosB=$\sqrt{2}$sinA,由于sinA≠0,即可解得cosB的值,结合范围B∈(0,π),即可求得B的值.
(Ⅱ)由余弦定理及基本不等式可得:a2+c2-$\sqrt{2}$ac=4,且ac≤$\frac{{a}^{2}+{c}^{2}}{2}$,从而可得4≥(1-$\frac{\sqrt{2}}{2}$)(a2+c2),即可解得a2+c2的最大值.

解答 (本题满分为12分)
解:(Ⅰ)在△ABC中,∵由已知及C=π-(A+B)可得:
sin(A-B)+sinC=sin(A-B)+sin(A+B)
=sinAcosB-cosAsinB+sinAcosB+cosAsinB
=2sinAcosB=$\sqrt{2}$sinA…3分
∵A是三角形的内角,sinA≠0,
∴cosB=$\frac{\sqrt{2}}{2}$…4分
∴由B∈(0,π),可得B=$\frac{π}{4}$…5分
(Ⅱ)∵由余弦定理可得:a2+c2-$\sqrt{2}$ac=4,且ac≤$\frac{{a}^{2}+{c}^{2}}{2}$,…7分
∴4=a2+c2-$\sqrt{2}$ac≥(a2+c2)-$\frac{\sqrt{2}}{2}$(a2+c2)=(1-$\frac{\sqrt{2}}{2}$)(a2+c2),…9分
∴a2+c2≤$\frac{4}{1-\frac{\sqrt{2}}{2}}$=8$+4\sqrt{2}$(当且仅当a=c时,等号成立),…11分
∴当A=C=$\frac{3π}{8}$时,a2+c2的最大值是8$+4\sqrt{2}$…12分

点评 本题主要考查了三角形内角和定理,两角和与差的正弦函数公式,余弦定理及基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知△ABC的顶点A、B的坐标分别为(-$\sqrt{3}$,0)、($\sqrt{3}$,0),C为动点,且满足sinB+sinA=$\sqrt{2}$sinC.
(1)求点C的轨迹L的方程;
(2)设M(x0,y0)是曲线L上的任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交曲线L于点P、Q.
①若直线OP、OQ的斜率均存在,并记为k1,k2,求证:k1k2为定值;
②试问OP2+OQ2是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆的中心在坐标原点,焦点在x轴上,且长轴长为12,离心率为$\frac{1}{2}$,则椭圆方程为(  )
A.$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{108}$=1B.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1C.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{36}$=1D.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数y=f(x)(x∈R)为偶函数,且?x∈R,满足f(x-$\frac{3}{2}$)=f(x+$\frac{1}{2}$),当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,f(x)=(  )
A.|x+4|B.|2-x|C.2+|x+1|D.3-|x+1|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,右顶点A(2,0).
(1)求椭圆C的方程;
(2)过点$M(\frac{3}{2},0)$的直线l交椭圆于B、D两点,设直线AB斜率为k1,直线AD斜率为k2.求证:k1k2为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2ccosB=2a-b.
(Ⅰ)求角C的大小;
(Ⅱ)若$c=\sqrt{3}$,b-a=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.作为市政府为民办实事之一的公共自行车建设工作已经基本完成了,相关部门准备对该项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,在公共自行车自助点随机访问了前来使用的100名市民,并根据这100名市民对该项目满意程度的评分(满分100分),绘制了如图频率分布直方图:
(1)为了了解部分市民对公共自行车建设项目评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(2)根据你所学的统计知识,判断该项目能否通过验收,并说明理由.
(注:满意指数=$\frac{满意程度的平均得分}{100}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求证:直线l恒过定点;
(2)判断直线l与圆C的位置关系;
(3)当m=0时,求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案