精英家教网 > 高中数学 > 题目详情
14.设a∈R,函数f(x)=ax2+bx-a(|x|≤1).
(1)若|f(0)|≤1,|f(1)|≤1,求证:|f(x)|≤$\frac{5}{4}$;
(2)当b=1,若f(x)的最大值为$\frac{17}{8}$,求实数a的值.

分析 (1)利用已知条件直接代入|f(0)|≤1,|f(1)|≤1,求出a,b的范围,然后利用绝对值的性质证明即可.
(2)利用条件以及(1)的结果,讨论a的范围求解函数的最值得到方程,求出a的值.

解答 (1)证:∵|f(0)|=|a|≤1;
|f(1)|=|b|≤1;
∴|f(x)|=|a(x2-1)+bx|≤|a||x2-1|+|b||x|≤|x2-1|+|x|,
∵-1≤x≤1,
∴|f(x)|≤|x2-1|+|x|=1-x2+|x|=-(|x|-$\frac{1}{2}$)2+$\frac{5}{4}$,
∴$|{f(x)}|≤\frac{5}{4}$.
(2)解:b=1当|a|≤1时,∵$f(x)≤\frac{5}{4}$,f(x)的最大值为$\frac{17}{8}$矛盾,∴|a|>1
当a>1时,∵$\frac{-1}{2a}∈(-1.0)$,∴f(x)在$(-1,-\frac{1}{2a})$是减函数,$(-\frac{1}{2a},1)$是增函数,
∵f(1)=1,f(-1)=-1,
∴f(x)max=f(1)=1不符题意.
当a<-1时 $-\frac{1}{2a}(-10,1)$,∴f(x)在$(-1,-\frac{1}{2a})$是增函数,
在$(-\frac{1}{2a},1)$是减函数,
∴$f{(x)_{max}}=f(-\frac{1}{2a})=-a-\frac{1}{4a}=\frac{17}{8}$-8a2-2=17a,即8a2+17a+2=0,
∴$a=-\frac{1}{8}$或a=-2,
∵a<-1,
∴a=-2.

点评 本题考查函绝对值的函数的应用,函数的最值的求法,考查分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知U={x|-1≤x<3},A={x|-1≤x<0},B={x|1<x≤2},则起∁UA,∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.a,b∈R,复数(a2-4a+6)+(-b2+2b-4)i表示的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列命题:
(1)?x∈(0,$\frac{π}{2}$),sinx>x;
(2)?x0∈R,使得sinx0+cosx0=$\sqrt{2}$;
(3)?x∈(0,1),ex<$\frac{1}{1-x}$;
(4)?x0∈R,使得lnx0=x0-1.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,已知a1=20,前n项和为Sn且S8=S13,当Sn取得最大时n的值为(  )
A.9B.10C.12D.10或11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow a$=(3,2),$\overrightarrow b$=(-1,2),$\overrightarrow c$=(5,6).
(1)求$3\overrightarrow a$+$\overrightarrow b$-2$\overrightarrow c$;
(2)求满足$\overrightarrow c$=m$\overrightarrow a$+n$\overrightarrow b$的实数m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{1}{2}{x^2}$-2ax+lnx在(0,+∞)上不单调,则a的取值范围是(  )
A.a<-1或a>1B.a≤-1或a≥1C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$)一段图象如图所示.
(1)分别求出A,ω,φ并确定函数f(x)的解析式;
(2)求出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现以下结果:
(1)4只鞋子没有成双的;
(2)4只恰好成两双;
(3)4只鞋子中有2只成双,另2只不成双.

查看答案和解析>>

同步练习册答案