精英家教网 > 高中数学 > 题目详情
3.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$)一段图象如图所示.
(1)分别求出A,ω,φ并确定函数f(x)的解析式;
(2)求出f(x)的单调递增区间.

分析 (1)根据函数f(x)的图象,求出A、T、ω与φ的值即可;
(2)根据正弦函数的单调性,即可求出f(x)的单调递增区间.

解答 解:(1)根据函数f(x)=Asin(ωx+ϕ)的图象知,
A=2,
T=$\frac{13π}{3}$-$\frac{π}{3}$=4π,∴ω=$\frac{1}{2}$,
令$\frac{1}{2}$×$\frac{π}{3}$+φ=2kπ,k∈Z,
∴φ=2kπ-$\frac{π}{6}$;
又|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{6}$;
∴函数f(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$);
(2)根据正弦函数的单调性,
令-$\frac{π}{2}$+2kπ≤$\frac{1}{2}$x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
则-$\frac{π}{3}$+2kπ≤$\frac{1}{2}$x≤$\frac{2π}{3}$+2kπ,k∈Z,
解得-$\frac{2π}{3}$+4kπ≤x≤$\frac{4π}{3}$+4kπ,k∈Z,
∴函数f(x)的单调递增区间是[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ],k∈Z.

点评 本题考查了利用三角函数的部分图象求解析式的应用问题,也考查了三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1的一个面A1B1C1D1在半径为$\sqrt{3}$的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD-A1B1C1D1的体积为(  )
A.$2\sqrt{2}$B.$3\sqrt{3}$C.2$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a∈R,函数f(x)=ax2+bx-a(|x|≤1).
(1)若|f(0)|≤1,|f(1)|≤1,求证:|f(x)|≤$\frac{5}{4}$;
(2)当b=1,若f(x)的最大值为$\frac{17}{8}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=ix,其中i为虚数单位,则f(1)+f(2)+f(3)+…f(2010)=-1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$的坐标为(  )
A.(1,2)或(-1,-2)B.(-1,-2)C.(2,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.6名同学争夺3项冠军,获得冠军的可能性有216种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l过点P(1,2).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l与x轴和y轴的正半轴分别交于A、B两点,O为坐标原点,求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.高一某班在合唱比赛中被各评委打出的分数如茎叶图所示,去掉一个最高分和最低分后,所剩数据的平均值为90.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.a>0,b>0.不等式-b<$\frac{1}{x}$<a的解集为(  )
A.{x|x<-$\frac{1}{b}$或x>$\frac{1}{a}$}B.{x|-$\frac{1}{a}$<x<$\frac{1}{b}$}
C.{x|x<-$\frac{1}{a}$或x>$\frac{1}{b}$}D.{x|-$\frac{1}{b}$<x<0或0<x<$\frac{1}{a}$}

查看答案和解析>>

同步练习册答案