精英家教网 > 高中数学 > 题目详情
2.过原点的直线l与抛物线y=x2-2ax(a>0)所围成的图形的面积为y=$\frac{9}{2}$a3,则直线l的方程为(  )
A.y=axB.y=ax或y=-6axC.y=-axD.y=ax或y=-5ax

分析 设l的方程为:y=kx,将直线与抛物线方程联解,得到两交点的横坐标分别为0与2a+k.由此分2a+k≥0与2a+k<0两种情况讨论,根据定积分计算公式与微积分的几何意义建立关于a、k的方程,解出k值即可得到所求直线l的方程.

解答 解:设l的方程为:y=kx,由$\left\{\begin{array}{l}{y=kx}\\{y={x}^{2}-2ax}\end{array}\right.$,解得x=0或x=2a+k,
(1)若2a+k≥0,则所围成图形的面积S=${∫}_{0}^{2a+k}$(kx-x2+2ax)dx=($\frac{1}{2}$kx2-$\frac{1}{3}$x3+ax2)${丨}_{0}^{2a+k}$=$\frac{(k+2a)^{3}}{6}$=$\frac{9}{2}$a3,解得:k=a.
∴所求直线l方程为:y=ax.
(2)若2a+k<0,则所围成图形的面积S=${∫}_{2a+k}^{0}$(kx-x2+2ax)dx=($\frac{1}{2}$kx2-$\frac{1}{3}$x3+ax2)${丨}_{2a+k}^{0}$=-$\frac{(k+2a)^{3}}{6}$=$\frac{9}{2}$a3,解之得k=-5a
∴所求直线l方程为:y=-5ax.
综上所述,直线l的方程为y=ax或y=-5ax,
故选:D.

点评 本题给出直线与抛物线围成的封闭图形的面积,求直线的方程.着重考查了直线与圆锥曲线的关系、微积分计算公式和微积分的几何意义等知识,考查了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.利用独立性检验来考虑两个分类变量X和Y是否有关系时,如果K2的观测值k≈4.62,那么在犯错误的概率不超过0.05的前提下认为“X和Y有关系”.
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\frac{1}{3}{x^3}-4x+4$在[0,3]上的最值是(  )
A.最大值是4,最小值是$-\frac{4}{3}$B.最大值是2,最小值是$-\frac{4}{3}$
C.最大值是4,最小值是$-\frac{1}{3}$D.最大值是2,最小值是$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于定义在R上的可导函数f(x),命题p:f(x)在x=x0处导数值为0,命题q:函数f(x)在x=x0处取得极值,则命题p是命题q成立的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在圆x2+y2-4x+4y-2=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为10$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用数学归纳法证明:(n+1)(n+2)(n+3)…(n+n)=2n•1•3…(2n-1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.曲线y=2x3+x2+5 在点(1,8)处的切线方程8x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+1,x<0}\\{f(x-1),x≥0}\end{array}\right.$,则y=f(x)-x的零点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-3|+|x+m|(x∈R).
(1)当m=1时,求不等式f(x)≥6的解集;
(2)若不等式f(x)≤5的解集不是空集,求参数m的取值范围.

查看答案和解析>>

同步练习册答案