| A. | y=ax | B. | y=ax或y=-6ax | C. | y=-ax | D. | y=ax或y=-5ax |
分析 设l的方程为:y=kx,将直线与抛物线方程联解,得到两交点的横坐标分别为0与2a+k.由此分2a+k≥0与2a+k<0两种情况讨论,根据定积分计算公式与微积分的几何意义建立关于a、k的方程,解出k值即可得到所求直线l的方程.
解答 解:设l的方程为:y=kx,由$\left\{\begin{array}{l}{y=kx}\\{y={x}^{2}-2ax}\end{array}\right.$,解得x=0或x=2a+k,
(1)若2a+k≥0,则所围成图形的面积S=${∫}_{0}^{2a+k}$(kx-x2+2ax)dx=($\frac{1}{2}$kx2-$\frac{1}{3}$x3+ax2)${丨}_{0}^{2a+k}$=$\frac{(k+2a)^{3}}{6}$=$\frac{9}{2}$a3,解得:k=a.
∴所求直线l方程为:y=ax.
(2)若2a+k<0,则所围成图形的面积S=${∫}_{2a+k}^{0}$(kx-x2+2ax)dx=($\frac{1}{2}$kx2-$\frac{1}{3}$x3+ax2)${丨}_{2a+k}^{0}$=-$\frac{(k+2a)^{3}}{6}$=$\frac{9}{2}$a3,解之得k=-5a
∴所求直线l方程为:y=-5ax.
综上所述,直线l的方程为y=ax或y=-5ax,
故选:D.
点评 本题给出直线与抛物线围成的封闭图形的面积,求直线的方程.着重考查了直线与圆锥曲线的关系、微积分计算公式和微积分的几何意义等知识,考查了分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:填空题
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值是4,最小值是$-\frac{4}{3}$ | B. | 最大值是2,最小值是$-\frac{4}{3}$ | ||
| C. | 最大值是4,最小值是$-\frac{1}{3}$ | D. | 最大值是2,最小值是$-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com