精英家教网 > 高中数学 > 题目详情
6.公差不为零的递增等差数列{an}的前n项和为Sn,若a4=2,S8=32,则log2(a6-a3)=(  )
A.2+$\frac{1}{2}$log32B.2-$\frac{1}{2}$log23C.2+log23D.2+$\frac{1}{3}$log23

分析 设出等差数列的公差,由题意列式求得公差,代入log2(a6-a3)得答案.

解答 解:设等差数列的公差为d(d>0),
由题意可得:$\left\{\begin{array}{l}{{a}_{1}+3d=2}\\{8{a}_{1}+\frac{8×7d}{2}=32}\end{array}\right.$,解得d=4.
∴log2(a6-a3)=log23d=log212=2+log23.
故选:C.

点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,考查了对数的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图(如图):
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
经济损失4000元以下经济损失4000元以上合计
捐款超过500元30
捐款低于500元6
合计
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表,在表一空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t为参数).
(Ⅰ)写出曲线C的极坐标方程和直线l在y轴上的截距;
(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上的函数f(x)满足:对?x∈(0,+∞),都有f(2x)=2f(x);当x∈(1,2]时,f(x)=2-x,给出如下结论:①对?m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);      
③存在n∈Z,使得f(2n+1)=9;
④函数f(x)在区间(a,b)单调递减的充分条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1),
其中所有正确结论的序号是:①②④.(请将所有正确命题的序号填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于x不等式|2x-a|-|2x+2a-3|<x2-8x+13有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$+(k-1)x-k+$\frac{3}{2}$,g(x)=xlnx.
(Ⅰ)若函数g(x)的图象在(1,0)处的切线l与函数f(x)的图象相切,求实数k的值;
(Ⅱ)当k=0时,证明:f(x)+g(x)>0;
(Ⅲ)设h(x)=f(x)+g′(x),若h(x)有两个极值点x1,x2(x1≠x2),且h(x1)+h(x2)<$\frac{7}{2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个顶点恰好是抛物线x2=4$\sqrt{3}$y的焦点,且离心率为e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过原点的直线与椭圆C交于A,B两点,过椭圆C的右焦点作直线l∥AB交椭圆C于M,N两点.试问$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否为定值,若为定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.棱长为1的正方体ABCD-A1B1C1D1中,点M,N,P分别为AB1,BC1,DD1的中点,给出下列结论:
①MN⊥AA1
②直线C1M与平面ABCD所成角的正弦值为$\frac{{\sqrt{5}}}{5}$
③MN⊥BP
④四面体B-DA1C1的体积为$\frac{1}{3}$
则正确结论的序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c,离心率为e,左焦点为F,点M($\sqrt{2}$c,$\sqrt{2}$ce)在椭圆C上,O是坐标原点.
(Ⅰ)求e的大小;
(Ⅱ)若C上存在点N满足|FN|等于C的长轴长的$\frac{3}{4}$,求直线ON的方程.

查看答案和解析>>

同步练习册答案