精英家教网 > 高中数学 > 题目详情
2.设复数z与$\frac{1+3i}{1-i}$在复平面内对应的点关于实轴对称,则z等于(  )
A.-1+2iB.1+2iC.1-2iD.-1-2i

分析 由复数代数形式的乘除运算化简$\frac{1+3i}{1-i}$,求出在复平面内对应的点的坐标,再结合已知条件求出复数z在复平面内对应的点的坐标,则答案可求.

解答 解:∵$\frac{1+3i}{1-i}$=$\frac{(1+3i)(1+i)}{(1-i)(1+i)}=\frac{-2+4i}{2}=-1+2i$,
∴$\frac{1+3i}{1-i}$在复平面内对应的点的坐标为:(-1,2).
∵复数z与$\frac{1+3i}{1-i}$在复平面内对应的点关于实轴对称,
∴复数z在复平面内对应的点的坐标为:(-1,-2).
则z=-1-2i.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某射手射击1次,命中目标的概率为0.9,他连续射击4次,且各次射击是否命中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率为0.93×0.1;
③他至少击中目标1次的概率是1-(0.1)4
④他最后一次才击中目标的概率是$C_4^1×0.9×{0.1^3}$
其中正确结论的序号是①③  (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若全集U={1,2,3,4,5},且∁UA={x∈N|1≤x≤3},则集合A的真子集共有(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x,y满足约束条件$\left\{\begin{array}{l}{-1≤x-y≤1}\\{2≤x+2y≤3}\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC是正三角形,O是△ABC的中心,D和E分别是边AB和AC的中点,若$\overrightarrow{OA}=x\overrightarrow{OD}+y\overrightarrow{OE}$,则x+y=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的五面体ABCDEF中,矩形BCEF所在的平面ABC垂直,AD∥CE,CE=2AD=2,M是BC的中点,在△ABC中,∠BAC=60°,AB=2AC=2.
(1)求证:AM∥平面BDE;
(2)求证:DE⊥平面BDC,并求三棱锥C-DBE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输出的S的值为12,则输入的a值可以为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xln(x-1)-ax2+bx(a,b∈R,a,b为常数,e为自然对数的底数).
(Ⅰ)当a=-1时,讨论函数f(x)在区间$(\frac{1}{e}+1,e+1)$上极值点的个数;
(Ⅱ)当a=1,b=e+2时,对任意的x∈(1,+∞)都有$f(x)<k{e^{\frac{1}{2}x}}$成立,求正实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=5+5cost\\ y=4+5sint\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

同步练习册答案