精英家教网 > 高中数学 > 题目详情
18.已知过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点的直线1与C交于A,B两点,且使|AB|=4a的直线1恰好有3条,则双曲线C的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

分析 由|AB|=4a的直线1恰好有3条,由双曲线的对称性可得,必有一条与x轴垂直,另两条关于x轴对称,令x=c,代入双曲线方程,计算即可得到弦长,由渐近线方程即可得到所求.

解答 解:由|AB|=4a的直线1恰好有3条,
由双曲线的对称性可得,必有一条与x轴垂直,
另两条关于x轴对称,
令x=c,代入双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),可得
y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
即有此时|AB|=$\frac{2{b}^{2}}{a}$=4a,
即为b=$\sqrt{2}$a,
即有双曲线的渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\sqrt{2}$x.
故选:A.

点评 本题考查双曲线的渐近线方程的求法,注意运用双曲线的对称性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知点A,B,C在圆O:x2+y2=2上运动,且AB⊥BC,若点P的坐标为(1,1),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的取值范围是(  )
A.[0,4$\sqrt{2}$]B.[2,4]C.[2$\sqrt{2}$,4$\sqrt{2}$]D.[2$\sqrt{2}$,3$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.10的-2次幂等于0.01;10的0.699次幂等于5(注lg2=0.3010)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=3,an+1+1=a1a2a3…an,(n∈N*).
证明:当n≥2时,a${\;}_{n}^{2}$=an+1-an+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x+2y=2$\sqrt{2a}$(x>0,y>0,a>1),则logax+logay的最大值是1.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高二上学期第一次月考数学(理)试卷(解析版) 题型:填空题

直线与圆相交于两点,若,则的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知θ为锐角,且sinθ:cos$\frac{θ}{2}$=8:5,求sinθcosθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的通项公式an=$\frac{(-1)^{n}(n+1)}{(2n-1)(2n+1)}$.
(1)写出它的第10项;
(2)判断$\frac{2}{33}$是不是该数列中的项.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高二上学期第一次月考数学(理)试卷(解析版) 题型:选择题

已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于( )

A. B. C. D.

查看答案和解析>>

同步练习册答案