精英家教网 > 高中数学 > 题目详情
20.在三棱柱ABC-A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是$\frac{\sqrt{6}}{4}$.

分析 如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.利用等边三角形的性质与直棱柱的性质可得:BO⊥侧面ACC1A1.四边形BODE是矩形.DE⊥侧面ACC1A1.因此∠DAE是AD与平面AA1C1C所成的角,为α,再利用直角三角形的边角关系即可得出.

解答 解:如图所示,
分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.
∴BO⊥AC,
∵侧棱AA1⊥底面ABC,∴三棱柱ABC-A1B1C1是直棱柱.
由直棱柱的性质可得:BO⊥侧面ACC1A1
∴四边形BODE是矩形.
∴DE⊥侧面ACC1A1
∴∠DAE是AD与平面AA1C1C所成的角,为α,
∴DE=$\frac{\sqrt{3}}{2}$=OB.
AD=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$.
在Rt△ADE中,sinα=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
故答案为:$\frac{\sqrt{6}}{4}$.

点评 本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.正项等比数列{an}满足a1=1,a2a6+a3a5=128,则下列结论正确的是(  )
A.?n∈N*,anan+1≤an+2B.?n∈N*,an+an+2=2an+1
C.?n∈N*,Sn<an+1D.?n∈N*,an+an+3=an+1+an+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.实数x、y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{x>0}\\{y≤2}\end{array}\right.$,若z=x2+y2,则z的取值范围是[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数y=f(x)满足f(x+2)=2f(x),且x∈(-1,1]时,$f(x)=-|x|+\frac{1}{2}$,则当x∈(0,7]时,y=f(x)与g(x)=log4x的图象的交点个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若经过双曲线左焦点的直线与双曲线交于A,B两点,则把线段AB称为该双曲线的左焦点弦,双曲线C:$\frac{{x}^{2}}{4}$-y2=1长度为整数且不超过4的左焦点弦的条数为(  )
A.6B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的离心率为2,则其一条渐近线方程为(  )
A.x-3y=0B.$\sqrt{3}$x-y=0C.x-$\sqrt{3}$y=0D.3x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.关于函数f(x)=sin4x-cos4x(x∈R)有下列命题:
①y=f(x)的周期为$\frac{π}{2}$;
②$x=\frac{π}{8}$是y=f(x)的一条对称轴;
③y=f(x)在[0,$\frac{π}{2}$]上是增函数,其中正确的命题序号是③
(把你认为正确命题的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.正方体ABCD-A1B1C1D1的棱长为1,动点P,Q分别在棱BC,CC1上,过点A,P,Q的平面截该正方体所得的截面记为S,设BP=x,CQ=y,其中x,y∈[0,1],下列命题正确的是②.(写出所有正确命题的编号)
①当x=0时,S为矩形,其面积最大为1;
②当x=y=$\frac{1}{2}$时,S为等腰梯形;
③当x=$\frac{1}{2}$,y=$\frac{3}{4}$时,S为六边形.

查看答案和解析>>

同步练习册答案