精英家教网 > 高中数学 > 题目详情
5.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.

分析 由题意得直线AB的方程为y=x-$\frac{p}{2}$,与抛物线方程消去y关于x的一元二次方程,利用根与系数的关系和抛物线的定义得出|AB|=4p=8,从而解出p的值,则抛物线的方程可求.

解答 解:由题意可知过焦点的直线方程为y=x-$\frac{p}{2}$,联立$\left\{\begin{array}{l}{{y}^{2}=2px}\\{y=x-\frac{p}{2}}\end{array}\right.$,
得${x}^{2}-3px+\frac{{p}^{2}}{4}=0$,
设A(x1,y1),B(x2,y2
根据抛物线的定义,得|AB|=x1+x2+p=4p=8,
解得p=2.
∴抛物线的方程为y2=4x.

点评 本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在数列{an}中.已知a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$.
(1)求证:{$\frac{1}{{a}_{n}}$-1}是等比数列
(2)若对任意n∈N+,an>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R,若函数f(x)的图象与x轴存在交点,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(为参数)的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三棱柱ABC-A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A(1,2)示抛物线y2=4x上一点,过点A作两条直线AD,AE分别交抛物线于点D,E,若AD,AE的斜率分别为kAD,KAE,且kAD+kAE=0,则直线DE的斜率为(  )
A.1B.-$\frac{1}{2}$C.-1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该球的表面积为12π,AB=2,AC=1,∠BAC=60°,则此三棱柱的体积为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设A1,A2分别为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右顶点,若双曲线上存在点M使得两直线斜率${k_{M{A_1}}}{k_{M{A_2}}}<2$,则双曲线C的离心率的取值范围为(  )
A.$(0,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},+∞)$D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.大学生小李毕业后自主创业,买了一辆小型卡车,运输农产品.在输葡萄收获季节,运输1车葡萄.当天批发完获利润500元,当天未批发或有剩余,一律按每车亏损300元计算.根据以往市场调查,得到葡萄收获季节市场需求量的直方图,如图所示,今年葡萄收获的季节,小李给当地农民定了160车葡萄,以X(单位:车,100≤X≤200)表示今年葡萄收获季节的市场需求量,Y(单位:元)表示今年葡萄销售的利润.
(1)将Y表示为X的函数;
(2)根据直方图估计利润Y不少于64000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,120),则X=110,且X=110的概率等于需求量落入[100,120)的频率),求Y的数学期望.

查看答案和解析>>

同步练习册答案