精英家教网 > 高中数学 > 题目详情
5.已知离心率为e的椭圆Γ:$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>2)的上、下焦点分别为F1和F2,过点(0,2)且不与y轴垂直的直线与椭圆交于M,N两点,若△MNF2为等腰直角三角形,则e2=$9-3\sqrt{2}$.

分析 由已知求出椭圆的焦点,准线方程,设△MNF2为等腰直角三角形,且MN=NF2,MN⊥NF2,设N到下准线的距离为m,M到上准线的距离为n,由椭圆的第二定义,利用合分比性质,以及勾股定理得到关于a的方程,解方程可得a,再由离心率公式求得答案.

解答 解:由椭圆Γ:$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>2),
得c2=a2-(a2-4)=4,∴c=2,
则椭圆的上、下焦点分别为F1(0,2),F2(0,-2),
离心率e=$\frac{2}{a}$,准线方程为y=±$\frac{{a}^{2}}{2}$,
如图△MNF2为等腰直角三角形,且MN=NF2,MN⊥NF2
设N到下准线的距离为m,M到上准线的距离为n,
由椭圆的定义可得,e=$\frac{N{F}_{2}}{m}$=$\frac{N{F}_{1}}{{a}^{2}-m}$=$\frac{M{F}_{1}}{n}=\frac{M{F}_{2}}{{a}^{2}-n}$,
即有$\frac{N{F}_{2}}{m}=\frac{MN}{{a}^{2}-m+n}=\frac{M{F}_{2}}{{a}^{2}-n}$=$\frac{\sqrt{2}MN}{{a}^{2}-n}=\frac{MN}{m}$,
则2m-n=a2,($\sqrt{2}$+1)n-$\sqrt{2}$m=(1-$\sqrt{2}$)a2
解得:m=(2-$\sqrt{2}$)a2
又NF12+NF22=F1F22=16,
即有($\frac{2}{a}$(a2-m))2+($\frac{2}{a}$•m))2=16,
代入m=(2-$\sqrt{2}$)a2,解方程可得a=$\frac{2}{3}(\sqrt{6}+\sqrt{3})$,
即有${e}^{2}=(\frac{c}{a})^{2}=(\frac{2}{\frac{2}{3}(\sqrt{6}+\sqrt{3})})^{2}=(\sqrt{6}-\sqrt{3})^{2}$=$9-3\sqrt{2}$.
故答案为:$9-3\sqrt{2}$.

点评 本题考查椭圆的定义、方程和性质,考查比例的性质和勾股定理的运用,考查灵活变形及运算能力,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知单位向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,则函数f(x)=(x$\overrightarrow{a}$+$\overrightarrow{b}$)2 (x∈R)(  )
A.既不是奇函数也不是偶函数B.既是奇函数又是偶函数
C.是偶函数D.是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p:函数y=2|x-1|的图象关于直线x=1对称;q:函数y=x+$\frac{1}{x}$在(0,+∞)上是增函数,由它们组成的新命题“p∧q”“p∨q”“¬p”中,真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若点A(-1,-1),B(1,3),C(x,5)三点共线,则使$\overrightarrow{AB}$=$λ\overrightarrow{BC}$成立的实数λ的值为(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知a=1,b=$\sqrt{3}$,A=120°,则此三角形(  )
A.无解B.有一解C.有两解D.解的个数不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设(2x-1)1001x+α2x2+…+α10x10,求下列各式的值.
(1)α012+…+α10
(2)α6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x,过其焦点F作两条相互垂直且不平行于x轴的直线,分别交抛物线C于点P1,P2和点P3,P4,线段P1P2,P3P4的中点分别记为M1,M2
(Ⅰ)求△FM1M2面积的最小值:
(Ⅱ)求线段M1M2的中点P满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b,求:
(1)$\frac{a}{c}$的值;
(2)$\frac{sinA}{sinBsinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax+lnx(a∈R),g(x)=$\frac{{x}^{2}}{x-lnx}$.
(1)当a=1时,求f(x)的单调增区间;
(2)若h(x)=f(x)-g(x)恰有三个不同的零点x1,x2,x3(x1<x2<x3).
①求实数a的取值范围;
②求证:(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)=1.

查看答案和解析>>

同步练习册答案