精英家教网 > 高中数学 > 题目详情
7.某工厂经过市场调查,甲产品的日销售量P(单位:吨)与销售价格x(单位:万元/吨)满足关系式P=$\left\{\begin{array}{l}{-ax+17,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$(其中a为常数),已知销售价格为4万元/吨时,每天可售出该产品9吨.
(1)求a的值;
(2)若该产品的成本价格为3万元/吨,当销售价格为多少时,该产品每天的利润最大?并求出最大值.

分析 (1)由销售价格为4万元/吨时,每日可销售出该商品9吨,建立方程,即可得到a的值;
(2)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的函数,再用二次函数求得最值,从而得出最大值对应的x值.

解答 解:(1)由题意,x=4,P=9,
由P=$\left\{\begin{array}{l}{-ax+17,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$(其中a为常数),可得17-4a=9,∴a=2
(2)由(1)可得P=$\left\{\begin{array}{l}{17-2x,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$
设商品所获得的利润为y=(x-3)P=$\left\{\begin{array}{l}{(17-2x)(x-3),3<x6}\\{(\frac{84}{{x}^{2}}+\frac{7}{x})(x-3),6<x≤9}\end{array}\right.$
当3<x≤6时,y=(17-2x)(x-3),当且仅当x=6时,取得最大值15;
当6<x≤9时,y=(x-3)($\frac{84}{{x}^{2}}$+$\frac{7}{x}$)=-252$(\frac{1}{x}-\frac{1}{8})^{2}$+$\frac{175}{16}$,
当x=8时,取得最大值$\frac{175}{16}$<15.
综上可得x=6时,取得最大值15,即当销售价格为6万元/吨时,该产品每天的利润最大且为15万元.

点评 本题考查分段函数的解析式的求法,考查函数的最值的求法,注意运用基本不等式和配方结合二次函数的最值求得,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知f:A→B为从集合A到集合B的一个映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y),若A中元素(1,a)的象是(b,4),则实数a,b的值分别为(  )
A.-2,3B.-2,-3C.-3,-2D.1,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,且f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),则f(x)的最小正周期为  (  )
A.$\frac{π}{2}$B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若在△F1PF2中,∠F1PF2=60°,则椭圆的离心率是(  )
A.$\frac{\sqrt{3}}{3}$B.2-$\sqrt{2}$C.2-$\sqrt{3}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的偶函数,若对任意x∈R,都有f(4+x)=f(-x),且当x∈[0,2]时,f(x)=2x-1,则下列结论不正确的是(  )
A.函数f(x)的最小正周期为4B.f(1)<f(3)
C.f(2016)=0D.函数f(x)在区间[-6,-4]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其函数对应关系如表:
x123
f(x)231
x123
g(x)321
则方程g(f(x))=x的解集为{3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间中随机地到达,试求这艘船中至少有一艘在停靠泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=
60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥平面PAD;
(2)取AB=2,在线段PD上是否存在点H,使得EH与平面PAD所成最大角的正切值为$\frac{{\sqrt{6}}}{2}$,若存在,请求出H点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,已知2asinA+csinC=bsinB,则∠B为(  )
A.钝角B.锐角C.直角D.不能

查看答案和解析>>

同步练习册答案