精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,且f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),则f(x)的最小正周期为  (  )
A.$\frac{π}{2}$B.C.D.π

分析 由题意求得x=$\frac{7π}{12}$,为f(x)=sin(ωx+φ)的一条对称轴,($\frac{π}{3}$,0)为f(x)=sin(ωx+φ)的一个对称中心,根据$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,解得ω的值.

解答 解:∵函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,
∴$\frac{π}{2}$-$\frac{π}{6}$≤$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{ω}$,即$\frac{π}{3}$≤$\frac{π}{ω}$,∴0<ω≤3.
∵f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),
∴x=$\frac{\frac{π}{2}+\frac{2π}{3}}{2}$=$\frac{7π}{12}$,为f(x)=sin(ωx+φ)的一条对称轴,
且($\frac{\frac{π}{6}+\frac{π}{2}}{2}$,0)即($\frac{π}{3}$,0)为f(x)=sin(ωx+φ)的一个对称中心,
∴$\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,解得ω=2∈(0,3],∴T=$\frac{2π}{2}$=π,
故选:D.

点评 本题考查三角函数的周期性及其求法,确定x=$\frac{7π}{12}$与($\frac{π}{3}$,0)为同一周期里面相邻的对称轴与对称中心是关键,也是难点,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,a1=1,a10=3,则a2a3…a8a9等于(  )
A.243B.$27\root{5}{27}$C.$\sqrt{3}$D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2${\sqrt{3}^{\;}}$,且AC,BD交于点O,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)若E为PB的中点,且二面角A-PB-D的余弦值为$\frac{{\sqrt{21}}}{7}$,求EC与平面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\left\{\begin{array}{l}{3x+\frac{5}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则满足f(f(a))=2f(a)的a的取值范围是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB=2,EF⊥AB,则EF与CD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x∈R,x2=x”的否定是(  )
A.?x∉R,x2≠xB.?x∈R,x2≠xC.?x∉R,x2≠xD.?x∈R,x2≠x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:指数函数y=(a-1)x在R上是单调函数;命题q:?x∈R,x2-(3a-2)x+1=0.若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂经过市场调查,甲产品的日销售量P(单位:吨)与销售价格x(单位:万元/吨)满足关系式P=$\left\{\begin{array}{l}{-ax+17,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$(其中a为常数),已知销售价格为4万元/吨时,每天可售出该产品9吨.
(1)求a的值;
(2)若该产品的成本价格为3万元/吨,当销售价格为多少时,该产品每天的利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若命题“?x∈[-1,1],x2+(a-1)x+1≤0”是真命题,则实数a的取值范围是a≤-1或a≥3.

查看答案和解析>>

同步练习册答案