精英家教网 > 高中数学 > 题目详情
如图,在四边形ABCD中,DA⊥平面ABC,∠ABC=90°,AE⊥CD,AF⊥DB,求证:
(1)EF⊥DC;
(2)平面DBC⊥平面AEF.
考点:平面与平面垂直的判定
专题:空间位置关系与距离
分析:(1)根据要证明线线垂直,只需要证线面垂直,要证线面垂直,需要证明线垂直面内的两条相交直线.
(2)先根据条件得到DA⊥BC进而得BC⊥平面DAB,把问题转化为证AF⊥平面DBC即可
解答: 证明:(1)∵DA⊥平面ABC,BC?平面ABC
∴DA⊥BC,
又BC⊥AB,AB∩AD=A
∴BC⊥平面ABD,
又AF?平面ABD,
∴BC⊥AF,
∵AF⊥DB,BC∩BD=B,
∴AF⊥平面BCD,
∵CD?平面BCD,
∴AF⊥CD,
∵AE⊥CD,AF∩AE=A
∴CD⊥平面AEF,
∵EF?平面AEF
∴CD⊥EF.
(2)由(1)可得AF⊥平面BCD
而AE?平面AEF
∴平面AEF⊥平面PBC
点评:本题主要考察面面垂直和线面垂直的判定,关键是它们之间的转化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱,两两夹角都为60°,且AB=AD=1,AA1=2,求对角线AC1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=13,直线l:x0x+y0y=13,设点A(x0,y0).
(1)若点A为(3,4),试判断直线l与圆C的位置关系;
(2)若点A在圆O上,且x0=2,y0>0,过点A作直线AM,AN分别交圆O于M,N两点,且直线AM和AN的斜率互为相反数.
①若直线AM过点O,求直线MN的斜率;
②试问:不论直线AM的斜率怎样变化,直线MN的斜率是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-2x+5,求证:当
5
2
≤a≤
23
4
时,f(x)在(-2,
1
6
)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

某数学老师身高175cm,他爷爷、父亲和儿子的身高分别是172cm、169cm和181cm.已知儿子的身高与父亲的身高有关.
(1)列表(用表格表示题目中父子之间儿子的身高y与父亲的身高x对应关系);
父亲的身高x(cm)
 
 
 
儿子的身高y(cm)
 
 
 
(2)用线性回归分析的方法预测该教师孙子的身高.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=2,a1+a2+a3=12,且an-2an+1+an+2=0,求数列{an}的前20项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形ADEF健身场地,如图,A=
π
2
,∠ABC=
π
6
,点D在AC上,点E在斜边BC上,且点F在AB上,AC=40米,设AD=x米.
(1)试用x表示S,并求S的取值范围;
(2)若矩形健身场地面积不小于144
3
平方米,求x的取值范围;
(3)设矩形健身场地每平方米的造价为
37
S
,再把矩形ADEF以外(阴影部分)铺上草坪,每平方米的造价为
12
S
,求总造价T关于S的函数T=f(S);并求出AD的长使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:

“x>2”是“x2-4>0”的
 
条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法流程图,则输出的a的值是
 

查看答案和解析>>

同步练习册答案