精英家教网 > 高中数学 > 题目详情
17.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是(  )
A.$\sqrt{5}$B.$4\sqrt{5}$C.$3\sqrt{5}$D.$2\sqrt{5}$

分析 由P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,我们易得PB=PC,取BC的中点D,则AD⊥BC,且PD⊥BC,利用勾股定理我们易求出AD的长,进而求出PD的长,即点P到BC的距离.

解答 解:如图所示,设D为等腰三角形ABC底面上的中点,则PD长即为P点到BC的距离.
又∵AD即为三角形的中线,也是三角形BC边上的高
∵BC=6,AB=AC=5,
∴AD=$\sqrt{{5}^{2}-{3}^{2}}$=4
在直角三角形PAD中,∵PA=8,
∴PD=4$\sqrt{5}$.
故选:B.

点评 本题考查的知识点是空间点、线、面之间的距离,其中利用三角形的性质,做出PD即为点P到BC的垂线段是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA=AD=AB=1,CD=2,E为PC的中点.
(Ⅰ)求证:BE⊥平面PCD;
(Ⅱ)求两面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有红、蓝、绿三色卡片各五张,每种颜色的卡片上分别写出A、B、C、D、E五个字母,如果每次取出四种卡片,要三种颜色齐全,且字母不同,那么不同的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{2}{3}$x+$\frac{1}{2}$,h(x)=$\sqrt{x}$.
(Ⅰ)若函数h(x)=$\sqrt{x}$图象上一点A(4,h(4)),则求在A点处的切线方程;
(Ⅱ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;
(Ⅲ)设a∈R,解关于x的方程lg[$\frac{3}{2}$f(x-1)-$\frac{3}{4}$]=2lgh(a-x)-2lgh(4-x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x3-3x2+1在x=0处取得极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,
①求异面直线PB与AD所成角的正弦值;
②求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$ax2+(1-a)x-lnx,其中a>-1.
(Ⅰ)若f(x)有两个极值点,求实数a的取值范围;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)证明:当-1<a<0时,方程f(x)=0有且只有一个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆W:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F(-1,0)斜率不为0的直线l过F交椭圆W于A,B,当l⊥x轴时,|AB|=$\frac{8\sqrt{5}}{5}$.
(Ⅰ)求椭圆W的方程
(Ⅱ)在x轴找一点P,使得∠APF=∠BPF
(Ⅲ)能否在x轴找一点Q,使得$\overrightarrow{QA}$•$\overrightarrow{QB}$为定值,若能找到,求出点Q的坐标,若不能找到,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平行六面体ABCD-A1B1C1D1中,∠A1AD=∠A1AB=60°,DAB=90°,A1A=3,AB=2,AD=1,则其对角线AC1的长为$\sqrt{23}$.

查看答案和解析>>

同步练习册答案