精英家教网 > 高中数学 > 题目详情
5.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA=AD=AB=1,CD=2,E为PC的中点.
(Ⅰ)求证:BE⊥平面PCD;
(Ⅱ)求两面角E-BD-C的余弦值.

分析 (Ⅰ)以A为坐标原点建立空间直角坐标系O-xyz.通过$\overrightarrow{PC}$•$\overrightarrow{BE}$=$\overrightarrow{CD}$•$\overrightarrow{BE}$=0,及线面垂直判定定理即得结论;
(Ⅱ)所求值即为平面BCD的一个法向量与平面BDE的一个法向量的夹角的余弦值,计算即可.

解答 解:如图,以A为坐标原点建立空间直角坐标系O-xyz,
依题意得A(0,0,0),B(1,0,0),C(2,1,0),D(0,1,0),P(0,0,1),E(1,$\frac{1}{2}$,$\frac{1}{2}$).
(Ⅰ)易得$\overrightarrow{PC}$=(2,1,-1),$\overrightarrow{CD}$=(-2,0,0),$\overrightarrow{BE}$=(0,$\frac{1}{2}$,$\frac{1}{2}$),
于是$\overrightarrow{PC}$•$\overrightarrow{BE}$=0+$\frac{1}{2}$+(-$\frac{1}{2}$)=0,$\overrightarrow{CD}$•$\overrightarrow{BE}$=0+0+0=0,
∴PC⊥BE,CD⊥BE,
又∵PC∩CD=C,∴BE⊥平面PCD;
(Ⅱ)依题可知PA⊥底面ABCD,
故$\overrightarrow{AP}$=(0,0,1)为平面BCD的一个法向量,
由于$\overrightarrow{BD}$=(-1,1,0),$\overrightarrow{BE}$=(0,$\frac{1}{2}$,$\frac{1}{2}$),
故设平面BDE的一个法向量为$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=0}\\{\overrightarrow{m}•\overrightarrow{BE}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{-x+y=0}\\{\frac{1}{2}y+\frac{1}{2}z=0}\end{array}\right.$,
取z=2,得$\overrightarrow{m}$=(-2,-2,2),
于是cos<$\overrightarrow{AP}$,$\overrightarrow{m}$>=$\frac{\overrightarrow{AP}•\overrightarrow{m}}{|\overrightarrow{AP}||\overrightarrow{m}|}$=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
所以二面角E-BD-C的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查空间中线面垂直的判定,以及求二面角的三角函数值,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求函数f(x)=$\frac{1+sinx+cosx}{1+sinx-cosx}$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(1+i)(2+bi)(b∈R,i为虚数单位)为实数,则b的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC为等边三角形.
(Ⅰ)求证:平面ABE⊥平面ADE;
(Ⅱ)求AE与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过⊙O:x2+y2=r2(r>0)上一点M作⊙O的切线l与椭圆E:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1交于点A、B两点.
(1)若点M的坐标为(2,2),r=2$\sqrt{2}$,点C的坐标为(4,4),求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)若切线l与椭圆交于A、B两点的中点的坐标为N(1,1),试求⊙O的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,b∈Z)的右焦点为F($\sqrt{5}$,0),短轴长与椭圆上顶点到右准线的距离之比为$\frac{4\sqrt{5}}{9}$.
(1)求椭圆的方程;
(2)过点P(0,3)引直线l顺次交椭圆于M、N两点,求|MN|取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知罗坊会议纪念馆对每日参观人数量拥挤等级规定如表:
 参观人数量 0~50 51~100101~150  151~200201~300 >300
 拥挤等级 优良  轻度拥挤中度拥挤  重度拥挤严重拥挤 
该纪念馆对3月份的参观人数量作出如图的统计数据:

(1)某人3月份连续2天到该纪念馆参观,求这2天他遇到的拥挤等级均为良的概率;
(2)从该纪念馆3月份参观人数低于100人的天数中随机选取3天,记这3天拥挤等级为优的天数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知($\sqrt{x}$-$\frac{2}{{x}^{2}}$)n的展开式中,第五项与第三项的二项式系数之比为14:3,求展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是(  )
A.$\sqrt{5}$B.$4\sqrt{5}$C.$3\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

同步练习册答案