精英家教网 > 高中数学 > 题目详情
20.已知三棱锥P-ABC的四个顶点都在球O的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA⊥平面ABC,则球O的表面积为(  )
A.$\frac{40π}{3}$B.$\frac{50π}{3}$C.12πD.15π

分析 求出BC,可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.

解答 解:∵AB=2,AC=1,∠BAC=120°,
∴BC=$\sqrt{{2}^{2}+{1}^{2}-2×2×1×(-\frac{1}{2})}$=$\sqrt{7}$,
∴三角形ABC的外接圆直径2r=$\frac{\sqrt{7}}{sin120°}$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{21}}{3}$,
∴r=$\frac{\sqrt{21}}{3}$,
∵PA⊥面ABC,PA=2,
由于三角形OPA为等腰三角形,
则有该三棱锥的外接球的半径R=$\sqrt{{r}^{2}+(\frac{1}{2}×2)^{2}}$=$\frac{\sqrt{30}}{3}$,
∴该三棱锥的外接球的表面积为S=4πR2=4π×($\frac{\sqrt{30}}{3}$)2=$\frac{40π}{3}$.
故选:A.

点评 本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.把下列给小题中的向量$\overrightarrow{b}$表示为实数与向量$\overrightarrow{a}$的积
(1)$\overrightarrow{a}$=3$\overrightarrow{e}$,$\overrightarrow{b}$=6$\overrightarrow{e}$
(2)$\overrightarrow{a}$=8$\overrightarrow{e}$,$\overrightarrow{b}$=14$\overrightarrow{e}$
(3)$\overrightarrow{a}$=-$\frac{2}{3}$$\overrightarrow{e}$,$\overrightarrow{b}$=$\frac{1}{3}$$\overrightarrow{e}$
(4)$\overrightarrow{a}$=-$\frac{3}{4}$$\overrightarrow{e}$,$\overrightarrow{b}$=$\frac{2}{3}$$\overrightarrow{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.小李同学今年寒假共抢得了九个红包,其中每个红包里有且仅有一个数字(单位为元),他将这九个数字组成如图$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所示的数阵,发现每行的三个数依次成等差数列,每列的三个数也依次成等差数列.若a22=26,则小李同学一共抢了234元的红包.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(x6$+\frac{1}{x\sqrt{x}}$)n的展开式中含有常数项,则n的最小值等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的顶点,P为双曲线上除顶点外的一点,记kPA,kPB分别表示直线PA,PB的斜率,若kPA•kPB=$\frac{5}{4}$,则该双曲线的离心率为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设{an}是公差不为零的等差数列,Sn为其前n项和,a22+a23=a28+a23,S7=7
(Ⅰ)求{an}的通项公式
(Ⅱ)若1+2log2bn=an+3(n∈N*),求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,2),$\overrightarrow{c}$=(-1,3),若($\overrightarrow{a}$+2$\overrightarrow{b}$)∥$\overrightarrow{c}$,则实数x的值为(  )
A.-$\frac{11}{3}$B.-17C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(1+$\frac{2}{x-2}$)(1+lnx),g(x)=x-4-2lnx.
(1)求函数g(x)的零点个数,并说明理由;
(2)设x1∈(0,2),x2∈(2,+∞),求证:f(x2)-f(x1)>$\frac{1}{2}$(e2-$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.要从由n名成员组成的小组中任意选派3人去参加某次社会调查.若在男生甲被选中的情况下,女生乙也被选中的概率为0.4,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案