| A. | $\frac{40π}{3}$ | B. | $\frac{50π}{3}$ | C. | 12π | D. | 15π |
分析 求出BC,可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.
解答
解:∵AB=2,AC=1,∠BAC=120°,
∴BC=$\sqrt{{2}^{2}+{1}^{2}-2×2×1×(-\frac{1}{2})}$=$\sqrt{7}$,
∴三角形ABC的外接圆直径2r=$\frac{\sqrt{7}}{sin120°}$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{21}}{3}$,
∴r=$\frac{\sqrt{21}}{3}$,
∵PA⊥面ABC,PA=2,
由于三角形OPA为等腰三角形,
则有该三棱锥的外接球的半径R=$\sqrt{{r}^{2}+(\frac{1}{2}×2)^{2}}$=$\frac{\sqrt{30}}{3}$,
∴该三棱锥的外接球的表面积为S=4πR2=4π×($\frac{\sqrt{30}}{3}$)2=$\frac{40π}{3}$.
故选:A.
点评 本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{11}{3}$ | B. | -17 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com