精英家教网 > 高中数学 > 题目详情
12.把下列给小题中的向量$\overrightarrow{b}$表示为实数与向量$\overrightarrow{a}$的积
(1)$\overrightarrow{a}$=3$\overrightarrow{e}$,$\overrightarrow{b}$=6$\overrightarrow{e}$
(2)$\overrightarrow{a}$=8$\overrightarrow{e}$,$\overrightarrow{b}$=14$\overrightarrow{e}$
(3)$\overrightarrow{a}$=-$\frac{2}{3}$$\overrightarrow{e}$,$\overrightarrow{b}$=$\frac{1}{3}$$\overrightarrow{e}$
(4)$\overrightarrow{a}$=-$\frac{3}{4}$$\overrightarrow{e}$,$\overrightarrow{b}$=$\frac{2}{3}$$\overrightarrow{e}$.

分析 这四道题用的方法是相同的,拿(2)来说吧:$14\overrightarrow{e}=\frac{14}{8}•8\overrightarrow{e}$,从而得到$\overrightarrow{b}=\frac{7}{4}\overrightarrow{a}$,同样的方法去解其它三个即可.

解答 解:(1)$6\overrightarrow{e}=2•3\overrightarrow{e}$;
∴$\overrightarrow{b}=2\overrightarrow{a}$;
(2)$14\overrightarrow{e}=\frac{7}{4}•8\overrightarrow{e}$;
∴$\overrightarrow{b}=\frac{7}{4}\overrightarrow{a}$;
(3)$\frac{1}{3}\overrightarrow{e}=-2•(-\frac{2}{3}\overrightarrow{e})$;
∴$\overrightarrow{b}=-2\overrightarrow{a}$;
(4)$\frac{2}{3}\overrightarrow{e}=-\frac{8}{9}•(-\frac{3}{4})\overrightarrow{e}$;
∴$\overrightarrow{b}=-\frac{8}{9}\overrightarrow{a}$.

点评 考查数乘的几何意义,以及向量的数乘运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆O的方程为x2+y2=1,设圆O与x轴交于P,Q两点,M是圆O上异于P,Q的任意一旦,直线PM交直线l:x=3于点P′,直线QM交直线l于点Q′,求证:以P′Q′为直径的圆C总过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若(x3+x-2n的展开式中只有第6项系数最大,则展开式中的常数项是210.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(tan(α+$\frac{1}{4}$β),-1),向量$\overrightarrow{b}$=(cosα,2),若0<α<$\frac{π}{4}$,β为f(x)=cos(2x+$\frac{π}{8}$)的最小正周期,且$\overrightarrow{a}$•$\overrightarrow{b}$=2,则$\frac{2co{s}^{2}α+sin(β-2α)}{sin(\frac{π}{2}-α)-cos(\frac{3π}{2}+α)}$=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(x-$\frac{1}{2x}$)8的展开式中的常数项为$\frac{35}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算下列定积分:
(1)${∫}_{e-1}^{2}$$\frac{1}{x+1}$dx;
(2)${∫}_{0}^{\frac{π}{2}}$$\frac{1+sin2x}{sinx+cosx}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a、b∈R,ab≠0,函数f(x)=$\frac{ax}{x+b}$图象的对称中心坐标为(-1,1).
(1)求a、b的值;
(2)若P(x,y)是函数y=f(x)图象上的动点,且x<-1,试求OP(O为坐标原点)的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x,y满足的约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-1≤0}\\{x-3y+3≥0}\end{array}\right.$,则z=x+2y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三棱锥P-ABC的四个顶点都在球O的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA⊥平面ABC,则球O的表面积为(  )
A.$\frac{40π}{3}$B.$\frac{50π}{3}$C.12πD.15π

查看答案和解析>>

同步练习册答案