精英家教网 > 高中数学 > 题目详情
已知角α的终边经过点(3,-4),则sinα+cosα的值为
 
考点:任意角的三角函数的定义
专题:三角函数的求值
分析:由题意可得 x=3,y=-4,r=5,可得sinα=
y
r
和cosα=
x
r
的值,从而求得sinα+cosα 的值.
解答: 解:∵已知角α的终边经过点(3,-4),则 x=3,y=-4,r=5,
∴sinα=
y
r
=-
4
5
,cosα=
x
r
=
3
5

sinα+cosα=-
1
5

故答案为:-
1
5
点评:本题主要考查任意角的三角函数的定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l过点A(6,1)与圆C:x2+y2-8x+6y+21=0相切,
(1)求该圆的圆心坐标及半径长;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a2a4a6a8=120,且
1
a4a6a8
+
1
a2a6a8
+
1
a2a4a8
+
1
a2a4a6
=
7
60
,则S9的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域和值域都是{1,2,3,4,5},其对应关系如下表所示,则f(f(4))=
 

x 1 2 3 4 5
f(x) 5 4 3 1 2

查看答案和解析>>

科目:高中数学 来源: 题型:

做一个容积为108dm3的正方形底的长方体无盖水箱,当它的高为
 
dm时最省料.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x<1,则
4
x-1
+x
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+2,若f′(1)=4,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanx=2,则
2sinx+cosx
cosx-sinx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=3,AC=5,BC=2
13
,则△ABC的面积为(  )
A、
3
2
B、
9
2
C、6
D、12

查看答案和解析>>

同步练习册答案