精英家教网 > 高中数学 > 题目详情
9.设O为坐标原点,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,抛物线C2:x2=-ay的准线方程为y=$\frac{1}{2}$.
(1)求椭圆C1和抛物线C2的方程;
(2)设过定点M(0,2)的直线t与椭圆C1交于不同的两点P,Q,若O在以PQ为直径的圆的外部,求直线t的斜率k的取值范围.

分析 (1)根据准线方程计算a,利用离心率计算c,从而得出b;
(2)设直线t的斜率为k,得出直线t的方程,联立方程组消元,根据根与系数的关系计算$\overrightarrow{OP}•\overrightarrow{OQ}$,令$\overrightarrow{OP}•\overrightarrow{OQ}$>0得出k的范围.

解答 解:(1)∵抛物线C2:x2=-ay的准线方程为y=$\frac{1}{2}$,
∴$\frac{a}{4}=\frac{1}{2}$,解得a=2
∴抛物线C2的方程为x2=-2y,
∵椭圆C1的离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,∴c=$\sqrt{3}$,
∴b2=a2-c2=1,
∴椭圆C1的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)当直线t无斜率时,O为PQ的中点,不符合题意;
当直线t有斜率时,设直线t的方程为y=kx+2,
联立方程组$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+2}\end{array}\right.$,消元得:(1+4k2)x2+16kx+12=0.
∵直线t与椭圆交于两点,
∴△=256k2-48(1+4k2)>0,∴k<-$\frac{\sqrt{3}}{2}$或k>$\frac{\sqrt{3}}{2}$,
设P(x1,y1),Q(x2,y2),则x1+x2=$\frac{-16k}{1+4{k}^{2}}$,x1x2=$\frac{12}{1+4{k}^{2}}$,
∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
∴$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{12(1+{k}^{2})}{1+4{k}^{2}}$-$\frac{32{k}^{2}}{1+4{k}^{2}}$+4=$\frac{16-4{k}^{2}}{1+4{k}^{2}}$.
∵O在以PQ为直径的圆的外部,∴∠POQ∈(0,$\frac{π}{2}$),∴$\overrightarrow{OP}•\overrightarrow{OQ}$>0,
∴16-4k2>0,解得-2<k<2.
综上,k的取值范围是(-2,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,2).

点评 本题考查了圆锥曲线的性质,直线与圆锥曲线的位置关系,常利用根与系数的关系化简计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为 2,则输出v的值为(  )
A.211-1B.211-2C.210-1D.210-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的必要不充分条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx+bx-c,f(x)在点(1,f(1))处的切线方程为x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若函数f(x)在定义域内恒有f(x)≥2lnx+kx成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为$\frac{1}{4}$,二面角B-AC-D的余弦值为$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某出租车租赁公司收费标准如下:起价费10元(即里程不超过5公里,按10元收费),超过5公里,但不超过20公里的部分,每公里按1.5元收费,超过20公里的部分,每公里再加收0.3元.
(1)请建立租赁纲总价y关于行驶里程x的函数关系式;
(2)某人租车行驶了30公里,应付多少钱?(写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理叫(  )
A.合情推理B.演绎推理C.类比推理D.归纳推理

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知F1(-4,0),F2(4,0)为椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的两个焦点,P在椭圆上,且△PF1F2的面积为$3\sqrt{3}$,则cos∠F1PF2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x∈R|x>$\sqrt{π}$),π为圆周率,则(  )
A.2∈AB.2∉AC.2>AD.2?A

查看答案和解析>>

同步练习册答案