精英家教网 > 高中数学 > 题目详情
1.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理叫(  )
A.合情推理B.演绎推理C.类比推理D.归纳推理

分析 根据归纳推理的定义,可得结论.

解答 解:根据归纳推理的定义,可得由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理叫归纳推理,
故选D.

点评 本题考查归纳推理的定义,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(1+x)-ax,$g(x)=\frac{x}{1+x}-bln(1+x)$.
(Ⅰ)当b=1时,求g(x)的最大值;
(Ⅱ)若对?x∈[0,+∞),f(x)≤0恒成立,求a的取值范围;
(Ⅲ)证明$\sum_{i=1}^n{\frac{i}{{{i^2}+1}}-lnn}≤\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y的取值如表:
x0134
ya4.34.86.7
若x,y具有线性相关关系,且回归方程为$\hat y=0.95x+2.6$,则a=2.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设O为坐标原点,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,抛物线C2:x2=-ay的准线方程为y=$\frac{1}{2}$.
(1)求椭圆C1和抛物线C2的方程;
(2)设过定点M(0,2)的直线t与椭圆C1交于不同的两点P,Q,若O在以PQ为直径的圆的外部,求直线t的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O是坐标原点,点A(1,0),若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的取值范围是(  )
A.[$\sqrt{5}$,2$\sqrt{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$]D.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是④( 写出所以正确结论的序号)
①PB⊥AD;
②平面PAB⊥平面PAE;
③BC∥平面PAE;
④直线PD与直线BC所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的上顶点为A,直线y=kx与椭圆交于B,C两点,且kAB•kAC=-$\frac{3}{4}$,则此椭圆的离心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{\sqrt{1-(lo{g}_{2}(cosx))^{2}}}$的定义域为$(2kπ-\frac{π}{3},2kπ+\frac{π}{3})(k∈Z)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设命题p:函数$f(x)=lg({a{x^2}-x+\frac{1}{16}a})$的定义域为R;命题q:函数$f(x)={({a-\frac{3}{2}})^x}$是R上的减函数,如果命题p或q为真命题,命题p且q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案