分析 在①中,AD与PB在平面的射影AB不垂直;在②中,平面PAB⊥平面PAE;在③中,BC∥平面PAD;在④中,在Rt△PAD中,PA=AD=2AB,从而∠PDA=45°.
解答 解:在①中,∵AD与PB在平面的射影AB不垂直,∴①不成立;
在②中,∵平面PAB⊥平面PAE,∴平面PAB⊥平面PBC也不成立,即②不成立;
在③中,∵BC∥AD,BC?平面PAD,AD?平面PAD,∴BC∥平面PAD,
∴直线BC∥平面PAE也不成立,故③不成立;
在④中,在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④正确.
故答案为:④.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{9}{16}$ | B. | -1 | C. | $-\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $7+\sqrt{2}$ | B. | $6\sqrt{2}$ | C. | $5\sqrt{2}$ | D. | $\sqrt{46}+\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com