精英家教网 > 高中数学 > 题目详情
11.下列四个结论中正确的个数为(  )
①两条不同的直线都和同一个平面平行,则这两条直线平行.
②两条不同直线都和第三条直线垂直,则这两条直线平行.
③若a∥α,b⊆α,则a∥b
④若a∥b,b⊆α,则a∥α
A.0B.1C.2D.3

分析 在①中,这两条直线相交、平行或异面;在②中,这两条直线平行或异面;在③中,a与b平行或异面;在④中,a∥α或a?α.

解答 解:在①中,两条不同的直线都和同一个平面平行,则这两条直线相交、平行或异面,故①错误;
在②中,两条不同直线都和第三条直线垂直,则这两条直线平行或异面,故②错误;
在③中,若a∥α,b⊆α,则a与b平行或异面,故③错误;
在④中,若a∥b,b⊆α,则a∥α或a?α,故④错误.
故选:A.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1,x2,x3,则它们的大小关系为(  )
A.s1>s2>s3B.s1>s3>s2C.s3>s2>s1D.s3>s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料.公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资被定为2100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若Sn为数列{an}的前n项和,且2Sn=an+1an,a1=4,则数列{an}的通项公式为an=$\left\{\begin{array}{l}{n+3,n为奇数}\\{n,n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是④( 写出所以正确结论的序号)
①PB⊥AD;
②平面PAB⊥平面PAE;
③BC∥平面PAE;
④直线PD与直线BC所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱柱ABC-A1B1C1的侧棱与底面垂直,且所有棱长均相等,M为A1C1的中点,则直线CM和直线A1B所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,求证:
(1)AC1⊥BD;
(2)AC1∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若α是第三象限角,则$\frac{α}{2}$是(  )
A.第二象限角B.第四象限角
C.第二或第三象限角D.第二或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且Sn+1=an+1+n2
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案