精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)的定义在R且满足f(2)=2,对任意x∈R,f′(x)>2,则f(x)>2x-2的解集为{x|x>2}.

分析 构造函数F(x)=f(x)-(2x-2),由导数法可得函数F(x)在R上单调递增,且F(2)=0,原不等式可化为F(x)>F(2),由函数单调性可得.

解答 解:构造函数F(x)=f(x)-(2x-2),
求导数可得F′(x)=f′(x)-2>0,
∴函数F(x)在R上单调递增,
∵f(2)=2,∴F(2)=f(2)-2=0,
∴f(x)>2x-2可化为F(x)>0,即F(x)>F(2),
由函数单调递增可得x>2,
∴原不等式的解集为{x|x>2}
故答案为:{x|x>2}

点评 本题考查不等式的解集,涉及函数与导数,构造函数是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,⊙O是△ABC的外接圆,AC=CD,AB=AC,延长BC到点D,连结AD交⊙O于点E,连结BE,若∠D=40°,则∠ABE的大小为40°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆C:(x-2)2+(y-2)2=8与y轴相交于A,B两点,则弦AB所对的圆心角的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:$\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1+i}$)2010+$\frac{(4-8i)^{2}-(-4+8i)^{2}}{4+3i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若抛物线y2=2px(p>0)的焦点到其准线的距离为1,则该抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(1+$\sqrt{3}$)6=a+b$\sqrt{3}$(其中a、b为有理数),则a-b=88.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tanα=$\frac{1}{3}$,tanβ=-2,其中0°<α<90°,90°<β<180°,求tan(α-β),并求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有两个等差数列{an}、{bn}它们的前n项和比是(n+2):(n+3),则此两个数列中第七项的比为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(x+1)+loga(3-x)(0<a<1).
(1)求函数f(x)的零点;
(2)若函数f(x)的最小值为-4,求实数a的值.

查看答案和解析>>

同步练习册答案