精英家教网 > 高中数学 > 题目详情
19.已知tanα=$\frac{1}{3}$,tanβ=-2,其中0°<α<90°,90°<β<180°,求tan(α-β),并求α+β的值.

分析 由条件利用两角差的正切公式求得tan(α-β),再利用两角和的正切公式求得tan(α+β),从而求得α-β的值.

解答 解:tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{\frac{1}{3}+2}{1+\frac{1}{3}•(-2)}$=7,
∵tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{\frac{1}{3}-2}{1-\frac{1}{3}•(-2)}$=-1,0°<α<90°,90°<β<180°,
∴α+β∈(90°,270°),∴α+β=135°.

点评 本题主要考查两角和差的正切公式的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=xex在点(1,f(1))处的切线方程是y=2ex-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2-blnx在点(1,f(1))处的切线为y=2.
(1)求实数a,b的值;
(2)是否存在实数m,当x∈(0,1]时,函数g(x)=f(x)-2x2+m(x-1)的最小值为0?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)的定义在R且满足f(2)=2,对任意x∈R,f′(x)>2,则f(x)>2x-2的解集为{x|x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个圆经过圆C1:x2+y2-8x-9=0和圆C2:x2+y2-8y+15=0的两个交点,且圆心在直线2x-y-1=0上,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求这函数的导数函数:f(x)=$\frac{1}{xlnx}$(x>0,x≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求${∫}_{0}^{1}\frac{x}{1+{x}^{2}}dx$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x2+bx+$\frac{1}{4}$<0的解集为∅,则b的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式23x-2x<λ(2x-2-x),其中λ∈R.

查看答案和解析>>

同步练习册答案