精英家教网 > 高中数学 > 题目详情
15.已知a、b、c>0,证明:($\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$)(a+b+c)2≥27.

分析 根据几个正数的几何平均数不大于它们的算术平均数,进行证明即可.

解答 证明:∵a>0,b>0,c>0,
∴$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$≥3$\root{3}{\frac{1}{{a}^{2}}•\frac{1}{{b}^{2}}•\frac{1}{{c}^{2}}}$=3$\root{3}{\frac{1}{{(abc)}^{2}}}$,
a+b+c≥3$\root{3}{abc}$;
∴($\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$)(a+b+c)2≥3$\root{3}{\frac{1}{{(abc)}^{2}}}$•${(3\root{3}{abc})}^{2}$
=27•$\root{3}{\frac{1}{{(abc)}^{2}}}$•$\root{3}{{(abc)}^{2}}$
=27,
当且仅当a=b=c时,“=”成立.

点评 本题考查了利用几个正数的几何平均数不大于它们的算术平均数证明不等式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD中,DC∥AB,AD⊥AB,AB=4,AD=DC=2,E,F分别为AD,BC的中点,将梯形ABCD沿EF折起,使得二面角D-EF-A为直二面角
(1)求折起后BD与CF所成角的余弦值;
(2)求二面角F-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校在一次数学考试中随机抽取了N名学生的成绩并分成一下五组,第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,已知图中从左到右后3个小组的频率之比为3:2:1,其中第4组的频数为20.
(1)从样本中属于第1组和第5组的学生中随机抽取2人,设他们的成绩分别为x,y,求事件“抽取的2人都在第1组或都在第5组”的概率;
(2)学校从成绩在[75,85)的第1,2组学生中用分层抽样的方法抽取24名学生进行复试,若第1组被抽中的学生实力相当,且能通过复试的概率均为$\frac{1}{5}$,设第一组的学生能通过复试的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.王露总是四点放学后由爸爸骑车接回家,今天因学校开运动会提前1小时放学,她先步行回家,而爸爸仍按以前的时间去接她,结果在中途接到了王露,因此王露比平时提前20分钟到家,那么爸爸骑车的速度是王露步行的几倍?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出满足下列条件的x的取值范围:
(1)tanx>0;
(2)tanx=0;
(3)tanx<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如表:
ABC
答卷数180300120
(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;
(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=ax-lnx,x∈(0,e]存在极值点,则实数a的取值范围是a>$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x-1)2+$\frac{a}{2}$ln(2x-1).
(1)当a=-2时,求函数f(x)的极值点;
(2)记g(x)=alnx,若对任意x≥1,都有f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中有一椭圆,椭圆方程为C:$\frac{{x}^{2}}{2}+{y}^{2}$=1.左右焦点分别F1(-1,0)和(1,0).设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.求证:PF1+PF2是定值.

查看答案和解析>>

同步练习册答案