精英家教网 > 高中数学 > 题目详情
20.某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如表:
ABC
答卷数180300120
(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;
(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.

分析 (I)由$\frac{180}{3}$=60可知:每60份试卷抽一份,即可得出;
(II)记事件M:被抽出的A、B、C三种答卷中分别再任取出1份,这3份答卷中恰有1份得优,可知只能C题答案为优,利用相互独立试卷的概率计算公式即可得出;
(Ⅲ)由题意可知,B题答案得优的概率为$\frac{1}{3}$,显然被抽出的B题的答案中得优的份数X的可能取值为0,1,2,3,4,5,且X~B$(5,\frac{1}{3})$.利用P(X=k)=${∁}_{5}^{k}(\frac{1}{3})^{k}(\frac{2}{3})^{5-k}$(k=0,1,2,3,4,5),及其E(X)=np即可得出分布列及其数学期望.

解答 解:(Ⅰ)由题意可得:

ABC
答卷数180300230
抽出的答卷数352
应分别从B、C题的答卷中抽出5份,2份.
(Ⅱ)记事件M:被抽出的A、B、C三种答卷中分别再任取出1份,这3份答卷中恰有1份得优,可知只能C题答案为优,依题意P(M)=$\frac{1}{3}×\frac{3}{5}×1$=$\frac{1}{5}$.
(Ⅲ)由题意可知,B题答案得优的概率为$\frac{1}{3}$,显然被抽出的B题的答案中得优的份数X的可能取值为0,1,2,3,4,5,且X~B$(5,\frac{1}{3})$.P(X=k)=${∁}_{5}^{k}(\frac{1}{3})^{k}(\frac{2}{3})^{5-k}$(k=0,1,2,3,4,5),可得P(X=0)=$\frac{32}{243}$,P(X=1)=$\frac{80}{243}$,P(X=2)=$\frac{80}{243}$,P(X=3)=$\frac{40}{243}$,P(X=4)=$\frac{10}{243}$,P(X=0)=$\frac{1}{243}$,
随机变量X的分布列为:
X012345
P$\frac{32}{243}$$\frac{80}{243}$$\frac{80}{243}$$\frac{40}{243}$$\frac{10}{243}$$\frac{1}{243}$
∴E(X)=np=$5×\frac{1}{3}$=$\frac{5}{3}$.

点评 本题考查了随机变量的二项分布列及其数学期望、分层抽样、相互独立事件的概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知$\frac{x^2}{8}+\frac{y^2}{4}$=1的左、右焦点分别为F1、F2,点A(2,2)在椭圆上,且AF2与x轴垂直,过A作直线与椭圆交于另一点于B,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用红、黄、蓝、绿、紫五种不同的颜色填充到如图所示的图形中,每格只填一种颜色,相邻两格不同色,记ξ为填充色为红色的格数,则P(ξ=2)=$\frac{6}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{{e}^{x+1}(x<0)}\\{\sqrt{-{x}^{2}+2x}(0≤x≤2)}\end{array}\right.$,若函数g(x)=f(x)-kx-2k恰有两个零点,则实数k的取值范围是[0,$\frac{\sqrt{2}}{4}$)∪(1,$\frac{e}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a、b、c>0,证明:($\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$)(a+b+c)2≥27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式|x-a|<b的解集为(-2,4),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*),则an=$\frac{1}{2n+1}$,a1a2+a2a3+…+a99a100=$\frac{11}{67}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图:正四棱锥V-ABCD中,高为2,底面ABCD是边长为4的正方形,则二面角V-AB-C的平面角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知函数f(x)=$\frac{ax}{{x}^{2}+b}$在x=1处取得极值为2,设函数y=f(x)图象上任意一点(x,f(x))处的切线斜率为k.
(1)求实数k的取值范围;
(2)若对于任意0<x1<x2<1,存在k,使得k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$,求证x1<|x|<x2

查看答案和解析>>

同步练习册答案