精英家教网 > 高中数学 > 题目详情
10.函数$f(x)={sin^2}x+\sqrt{3}sinxcosx$的一条对称轴为(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=\frac{5π}{12}$

分析 利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,可得对称轴方程.即可判断.

解答 解:函数$f(x)={sin^2}x+\sqrt{3}sinxcosx$,
化简可得:f(x)=$\frac{1}{2}$$-\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$.
对称轴方程为:2x-$\frac{π}{6}$=$\frac{π}{2}+kπ$,k∈Z,
得:x=$\frac{1}{2}kπ+\frac{π}{3}$,k∈Z,
当k=0,可得一条对称轴为x=$\frac{π}{3}$.
故选C

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知集合A={x|x2-x-6<0},集合B={x|x≤0},则A∩(∁RB)=(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某种产品的产量以其质量指标值(单位:克)衡量,质量指标值越大表明质量越好,且质量指标值大于17时,该产品为优等品,现在为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取10件样品,测量样品的质量指标值,得到如图所示的茎叶图.
(1)试用上述样本数据估计甲、乙两厂产品的优等品率.
(2)从甲厂10件样品中抽取2件,乙厂10件中抽取1件,将3件中优等品的件数记为x,求x的分布列和数学期望;
(3)从甲厂的10件样品中有放回地随机抽取3件(每件抽取一件),也从乙厂的10件样品中有放回地随机抽取3件(每次抽取一件),求抽到的优等品甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别是F1,F2,P为椭圆C1上任意一点,|PF1|2+|PF2|2的最小值为8.
(I)求椭圆C1的方程;
(II)设椭圆C2:$\frac{{2{x^2}}}{a^2}+\frac{{2{y^2}}}{b^2}=1,Q({{x_0},{y_0}})$为椭圆C2上一点,过点Q的直线交椭圆C1于A,B两点,且Q为线段AB的中点,过O,Q两点的直线交椭圆C1于E,F两点.
(i)求证:直线AB的方程为x0x+2y0y=2;
(ii)当Q在椭圆C2上移动时,四边形AEBF的面积是否为定值?若是,求出该定值;不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,角A、B、C的对边分别为a、b、c,G是平面△ABC上一点,且满足a•$\overrightarrow{GA}$+b•$\overrightarrow{GB}$+c•$\overrightarrow{GC}$=0,则G是△ABC中的(  )
A.内心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示程序框图,若输入的k=4,则输出的s=(  )
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于函数f(x)给出定义:设f′(x)是函数f(x)的导函数,f″(x)是函数f′(x)的导函数,若函数f″(x)有零点x0,则称(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心,给定函数f(x)=$\frac{1}{3}$x3-x2-$\frac{1}{3}$x+2,请你根据上面探究结果,计算$\sum_{i1}^{4035}$f($\frac{i}{2017}$)=4035.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设点O、P、Q是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与抛物线y2=4x的交点,O为坐标原点,若△OPQ的面积为2,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且$\overrightarrow{AE}=λ\overrightarrow{AB},\overrightarrow{AF}=μ\overrightarrow{AC}$,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则$\overrightarrow{MN}$的最小值为$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

同步练习册答案