精英家教网 > 高中数学 > 题目详情
移动公司根据市场客户的不同需求,对某地区的手机套餐通话费提出两种优惠方案,两种方案所付电话费(元)与通话时间(分钟)之间的关系如图所示(实线部分:MN与CD平行即直线方程y=kx+b中的斜率k相等).
(1)若通话时间为两小时,按方案A,B各付话费多少元?
(2)方案B从400分钟以后,每分钟收费多少元?
(3)通话时间在什么范围内,方案B比方案A优惠?
考点:根据实际问题选择函数类型
专题:应用题,函数的性质及应用
分析:(1)要求通话时间为2小时,按方案A,B各付话费多少元,关键是要根据函数图象求出函数的解析式,再当通话时间代入解析式进行求解.
(2)由(1)中的结论,我们不难求出方案B在400分钟后,对应函数图象的斜率,即每分钟收费的多少.
(3)由图可知,方案A与方案B的图象有交点,在交点的左侧,A方案更优惠,在交点的右侧,B方案更优惠,故我们只要求出交战的横坐标,即可得到通话时间在什么范围内,方案B比方案A优惠.
解答: 解:设这两种方案的应付话费一通话时间的函数关系分别为fA(x)和fB(x),
由图知M(100,50),N(400,110),C(400,100),MN∥CD;
则fA(x)=
50,0≤x≤100
1
5
x+30,x>100
,fB(x)=
100,0≤x≤400
1
5
x+20,x>400

(1)通话2小时的费用分别是54元、100元.
(2)∵fB(n+1)-fB(n)=0.2,
∴方案B从400min以后,每分钟收费0.2元.
(3)由
1
5
x+30=100,可得x=350,
∴[0,350),fA(x)<fB(x);(350,+∞),fA(x)>fB(x),
∴通话时间在(350,+∞)内,方案B比方案A优惠.
点评:已知函数图象求函数的解析式,是一种常见的题型,关键是要知道函数的类型,利用待定系数法设出函数的解析式,然后将函数图象上的点的坐标代入求出参数的值,即可得到要求函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
-
2x
2x+1
(a为常数)
(1)若y=f(x)为奇函数,求出a的值;
(2)在满足(1)的条件下,探索y=f(x)的单调性,并利用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-2m-2)xm-1为偶函数,且在区间(0,+∞)上是单调递减函数,
(1)求函数f(x)的解析式;
(2)讨论函数F(x)=a
f(x)
-
b
xf(x)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系.直线l的参数方程是:
x=
2
2
t+m
y=
2
2
t.
(t是参数)
(1)求曲线C和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,且|AB|=
14
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为3,设
AB
AC
的夹角为θ.
(1)若
AB
AC
=6,求θ的值;
(2)若
π
4
≤θ≤
π
2
,求函数f(θ)=2sin2
π
4
+θ)-
3
cos2θ的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:f′(
x1x2
)<0(f′(x)为函数f(x)的导函数);
(3)设g(x)=3ax2-ax+2+a,若f(x)+e-x≥g(x)对x∈R恒成立,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l:3cosθ-2sinθ=
-8
ρ

(Ⅰ)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的2倍、3倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(Ⅱ)求C2上一点P到l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(2x+
π
6
),x∈R.
(1)求f(x)的最小正周期、单调区间和对称轴.
(2)当x∈[-
π
4
π
4
]时,求f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xex-x-2在区间[k,k+1]上有解,则实数k的取值集合是
 

查看答案和解析>>

同步练习册答案