分析 (Ⅰ)求出函数的导数,根据函数的切线方程得到关于a,b的方程组,求出a,b的值,从而求出f(x)的解析式即可;
(Ⅱ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.
解答 解:(Ⅰ)f′(x)=-$\frac{{x}^{2}+2ax-b}{{{(x}^{2}+b)}^{2}}$,
又y=f(x)的图象在点M(-1,f(-1))处的切线方程为:x-4y+1=0,
∴$\left\{\begin{array}{l}{-1-4f(-1)+1=0}\\{f(-1)=\frac{1}{4}}\end{array}\right.$,即$\left\{\begin{array}{l}{f(-1)=0}\\{f′(-1)=\frac{1}{4}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\frac{a-1}{1+b}=0}\\{-\frac{1-2a-b}{{(1+b)}^{2}}=\frac{1}{4}}\end{array}\right.$,∴$\left\{\begin{array}{l}{a=1}\\{b≠-1}\\{-4+8a+4b{=(1+b)}^{2}}\end{array}\right.$,
∴a=1,b=3,
∴f(x)=$\frac{x+1}{{x}^{2}+3}$;
(Ⅱ)由(Ⅰ)得f(x)=$\frac{x+1}{{x}^{2}+3}$,
∴f′(x)=-$\frac{(x+3)(x-1)}{{{(x}^{2}+3)}^{2}}$,
令f′(x)>0,解得:-3<x<1,
令f′(x)<0,解得:x>1或x<-3,
∴f(x)在(-∞,-3)递减,在(-3,1)递增,在(1,+∞)递减,
∴f(x)极小值=f(-3)=-$\frac{1}{6}$,f(x)极大值=f(1)=$\frac{1}{2}$.
点评 本题考查了函数的单调性、极值问题,考查导数的应用以及切线方程问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | M∩N=∅ | B. | M?N | C. | N?M | D. | M=N |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{8}{27}$ | D. | $\frac{19}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,+∞) | B. | (-∞,0)∪(3,+∞) | C. | (0,+∞) | D. | (-∞,0)∪(0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com