精英家教网 > 高中数学 > 题目详情
17.设锐角三角形ABC的三内角为A,B,C所对的边分别为a,b,c,函数f(x)=cosxsin(x+$\frac{π}{6}$)-cos2x.
(Ⅰ)求f(A)的取值范围;
(Ⅱ)若f(A)=$\frac{1}{4}$,△ABC的面积为$\frac{\sqrt{3}}{4}$,求$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围.

分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)-$\frac{1}{4}$,结合范围A∈(0,$\frac{π}{2}$),可求2A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),利用正弦函数的性质可求f(A)的取值范围;
(Ⅱ)由题意可得sin(2A-$\frac{π}{6}$)=1,结合范围2A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),可求A,利用三角形面积公式可求bc的值,利用平面向量数量积的运算即可计算得解.

解答 (本题满分为14分)
解:(Ⅰ)f(x)=cosxsin(x+$\frac{π}{6}$)-cos2x
=cosx($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)-$\frac{1+cos2x}{2}$
=$\frac{\sqrt{3}}{4}$sin2x+$\frac{1}{4}$(1+cos2x)-$\frac{1+cos2x}{2}$
=$\frac{\sqrt{3}}{4}$sin2x-$\frac{1}{4}$cos2x-$\frac{1}{4}$
=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)-$\frac{1}{4}$,--------------------------6分
因为是锐角三角形,
所以A∈(0,$\frac{π}{2}$),
所以2A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
所以sin(2A-$\frac{π}{6}$)∈(-$\frac{1}{2}$,1],
所以f(A)∈(-$\frac{1}{2}$,$\frac{1}{4}$];----8分
(Ⅱ)因为f(A)=$\frac{1}{4}$,
所以sin(2A-$\frac{π}{6}$)=1,
又因为:2A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
所以:2A-$\frac{π}{6}$=$\frac{π}{2}$,即A=$\frac{π}{3}$.--------------------10分
又△ABC的面积为$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$bcsinA,所以bc=1.-------------------12分
所以$\overrightarrow{AB}$•$\overrightarrow{AC}$=bccosA=$\frac{1}{2}$.------------------14分.

点评 本题主要考查了用三角函数恒等变换的应用,正弦函数的图象和性质,三角形面积公式,平面向量数量积的运算在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(x)=$\frac{{{e^{ax}}}}{x}$,(e为自然对数的底数).
(Ⅰ)若f(x)在(0,4]上是减函数,求实数a的取值范围;
(Ⅱ)当a=1时,求函数f(x)在[m,m+2](m>0)上的最小值;
(Ⅲ)求证:$\sum_{i=1}^n{\frac{1}{{i•{e^i}}}}<\frac{7}{4e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正四棱锥P-ABCD,底面正方形的边长是2,高与斜高的夹角为30°,那么正四棱锥的侧面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为(  )
A.2B.$\frac{3}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=1+log3x,(x>9)的值域为(  )
A.[2,+∞)B.[3,+∞)C.(3,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(1-x)ex
(1)证明:当x>0时,f(x)<f(-x);
(2)若方程f(x)=a(1+x2)有两个不相等的实根x1,x2,求实数a的取值范围,并证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1是椭圆${x^2}+\frac{y^2}{4}=1$的下焦点,O为坐标原点,点P在椭圆上,则$\overrightarrow{P{F_1}}•\overrightarrow{PO}$的最大值为(  )
A.$4+2\sqrt{3}$B.$4-2\sqrt{3}$C.$\sqrt{2}-1$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正四棱柱ABCD-A1B1C1D1中,AB=2,$C{C_1}=2\sqrt{2}$,E为棱CC1的中点,则直线AC1与平面BDE的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三次函数f(x)=2ax3+6ax2+bx的导函数为f′(x),则函数f(x)与f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案