分析 求出切线方程,得到B的坐标,根据不等式的性质求出OB的值即可.
解答 解:切点P的坐标是(x0,cosx0),(x0∈(0,$\frac{π}{2}$]),
则切线的斜率是-sinx0,
故切线AB的方程是:y-cosx0=-sinx0(x-x0),
故B(0,cosx0+x0sinx0),A($\frac{co{sx}_{0}}{si{nx}_{0}}$+x0,0)
故|OB|=cosx0+x0sinx0,OA=$\frac{co{sx}_{0}}{si{nx}_{0}}$+x0,即$\frac{OB}{OA}$=sinx0,
故OA+$\frac{1}{OB}$$≥\sqrt{OA•\frac{1}{OB}}$=2$\sqrt{\frac{1}{si{nx}_{0}}}$,
当x∈(0,$\frac{π}{2}$]时,2$\sqrt{\frac{1}{si{nx}_{0}}}$≥2,
当且仅当x0=$\frac{π}{2}$时取“=”,
故OB=cos$\frac{π}{2}$+$\frac{π}{2}$sin$\frac{π}{2}$=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.
点评 本题考查了切线方程问题,考查不等式的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 48种 | B. | 72种 | C. | 96种 | D. | 108种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{7\sqrt{2}}{8}$ | D. | $\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 广告费x(万元) | 1 | 2 | 3 | 4 | 5 |
| 销售量y(万台) | 2 | 5 | 10 | 15 | 18 |
| A. | 30 | B. | 52 | C. | 57.2 | D. | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{3}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-ln2}{2}$ | B. | $\frac{3-2ln2}{4}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{1+2ln2}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com