精英家教网 > 高中数学 > 题目详情
12.若曲线$C:y=cosx({x∈({0,\frac{π}{2}}]})$上一点P(x0,cosx0)处的切线与x轴,y轴分别交于A,B两点,则当$OA+\frac{1}{OB}$取得最小值时,OB的值为$\frac{π}{2}$.

分析 求出切线方程,得到B的坐标,根据不等式的性质求出OB的值即可.

解答 解:切点P的坐标是(x0,cosx0),(x0∈(0,$\frac{π}{2}$]),
则切线的斜率是-sinx0
故切线AB的方程是:y-cosx0=-sinx0(x-x0),
故B(0,cosx0+x0sinx0),A($\frac{co{sx}_{0}}{si{nx}_{0}}$+x0,0)
故|OB|=cosx0+x0sinx0,OA=$\frac{co{sx}_{0}}{si{nx}_{0}}$+x0,即$\frac{OB}{OA}$=sinx0
故OA+$\frac{1}{OB}$$≥\sqrt{OA•\frac{1}{OB}}$=2$\sqrt{\frac{1}{si{nx}_{0}}}$,
当x∈(0,$\frac{π}{2}$]时,2$\sqrt{\frac{1}{si{nx}_{0}}}$≥2,
当且仅当x0=$\frac{π}{2}$时取“=”,
故OB=cos$\frac{π}{2}$+$\frac{π}{2}$sin$\frac{π}{2}$=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.

点评 本题考查了切线方程问题,考查不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=4x+a•2x+a+1在R上存在零点,则实数a的取值范围为(-∞,2-2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现要给一长、宽、高分别为3、2、1的长方体工艺品各面涂色,有红、橙、黄、蓝、绿五种颜色的涂料可供选择,要求相邻的面不能涂相同的颜色,且橙色跟黄色二选一,红色要涂两个面,则不同的涂色方案种数有(  )
A.48种B.72种C.96种D.108种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知在△ABC中,b2+a2-c2<0,且b>a,sinA+$\sqrt{2}$cosA=$\frac{5}{3}$,则tanA=(  )
A.$\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$B.$\frac{\sqrt{2}}{4}$C.$\frac{7\sqrt{2}}{8}$D.$\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了解某种产品的月广告费用x(单位:万元)对月销售量y(单位:万台)的影响,收集到如下5个月的统计数据:
广告费x(万元)12345
销售量y(万台)25101518
根据上表中的数据可得线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=4.2,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,据此估计,该产品的月广告费为13万元时的月销售量为(  )
A.30B.52C.57.2D.70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}满足a2=3,a4+a7=20.
(Ⅰ)求数列{an}的通项an及前n项和为Sn
(Ⅱ)在(Ⅰ)的条件下,证明:$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.A${\;}_{5}^{2}$-C${\;}_{5}^{3}$等于(  )
A.0B.-10C.10D.-40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的 部分图象如图所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,则f($\frac{π}{3}$)等于(  )
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[0,2]上随机取两个数x,y,则xy∈[0,2]的概率是(  )
A.$\frac{1-ln2}{2}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1+2ln2}{2}$

查看答案和解析>>

同步练习册答案