精英家教网 > 高中数学 > 题目详情
2.若函数f(x)=4x+a•2x+a+1在R上存在零点,则实数a的取值范围为(-∞,2-2$\sqrt{2}$].

分析 设2x=t,则t2+at+a+1=0在(0,+∞)上有解,分离参数得-a=$\frac{{t}^{2}+1}{t+1}$,利用不等式求出函数的最值即可得出a的范围.

解答 解:设2x=t,t2+at+a+1=0在(0,+∞)上有解,
分离参数得:-a=$\frac{{t}^{2}+1}{t+1}$=t+1+$\frac{2}{t+1}$-2≥2$\sqrt{2}$-2,
当且仅当t+1=$\frac{2}{t+1}$即t=$\sqrt{2}$-1时取等号,
∴a≤2-2$\sqrt{2}$,
故答案为:(-∞,2-2$\sqrt{2}$].

点评 本题考查了函数零点与函数最值的关系,函数最值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.直线2x+2y-1=0的倾斜角是135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+1,g(x)=2alnx+1(a∈R)
(1)求函数h(x)=f(x)-g(x)的极值;
(2)当a=e时,是否存在实数k,m,使得不等式g(x)≤kx+m≤f(x)恒成立?若存在,请求实数k,m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知O为坐标原点,点A(5,-4),点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x<1}\\{y≤2}\end{array}\right.$内的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是[-8,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB=60°,AB=2,AD=1.
(1)求证:PA⊥BD;
(2)若∠PCD=45°,求点D到平面PBC的距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2+ax+b,m,n满足m<n且f(m)=n,f(n)=m,则当m<x<n时,(  )
A.f(x)+x<m+nB.f(x)+x>m+nC.f(x)-x<0D.f(x)-x>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=cos2x+asinx-$\frac{a}{4}$-$\frac{1}{2}$(0≤x≤$\frac{π}{2}$),其中a>0.
(1)用a表示f(x)的最大值M(a);
(2)当M(a)=2时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函数f(x)的唯一一个极值点,则实数k的取值范围是(  )
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线$C:y=cosx({x∈({0,\frac{π}{2}}]})$上一点P(x0,cosx0)处的切线与x轴,y轴分别交于A,B两点,则当$OA+\frac{1}{OB}$取得最小值时,OB的值为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案