精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)的定义域为[-2,2],且满足:f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)判断f(x)的奇偶性;
(3)若f(x)为单调函数,且f(1)>0,f(-1)=-1,解不等式:f(2x)+f(x2-2)>-2.

分析 (1)利用赋值法令x=y=0,即可求f(0);
(2)利用赋值法令y=-x,即可得到f(-x)=-f(x),故f(x)为奇函数
(3)将不等式f(2x)+f(x2-2)>-2进行等价转化,利用函数的单调性进行求解.

解答 解:(1)令x=y=0,则f(0)=f(0)+f(0),∴f(0)=0,
(2)令y=-x,则f(0)=f(x)+f(-x),
即f(-x)=-f(x),
∴f(x)为奇函数,
(3)由于f(x)为奇函数,且为单调函数,f(1)>0,f(-1)=-1,
∴f(x)为单调递增函数,
令x=y=-1,
则f(-2)=2f(-1)=-2,
∵f(2x)+f(x2-2)>-2,
∴f(2x+x2-2)>f(-2)
∴$\left\{\begin{array}{l}{-2≤{x}^{2}+2x-2≤2}\\{{x}^{2}+2x-2>-2}\end{array}\right.$,
解得0<x≤$\sqrt{5}$-1.

点评 本题考查了抽象函数的应用,考查了函数的奇偶性的判断与证明,训练了特值法求函数的值,考查了学生灵活处理问题和解决问题的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若复数z=(a2-2a-3)+(a2-1)i,(a∈R,i为虚数单位)是纯虚数,则实数a的值为(  )
A.3B.-3C.-1或3D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致.
(Ⅰ)讨论f(x)的极值;
(Ⅱ)设a>0,若函数f(x)和g(x)在区间[-2,+∞)上单调性一致,求实数b的取值范围;
(Ⅲ)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.调查某市出租车使用年限x和该年支出维修费用y(万元),得到数据如表:
x23456
y2.23.85.56.57
(1)画出y关于x的散点图;
(2)用最小二乘法求出回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)由(2)中结论预测第10年所支出的维修费用.
参考数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x+$\frac{b}{x}$在(1,e)上为增函数,则实数b的取值范围是(  )
A.(-∞,1]∪[e2,+∞)B.(-∞,0]∪[e2,+∞)C.(-∞,1]D.[1,e2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.复平面内复数z=(m2-8m+15)+(m2-5m-14)i,
(1)若复数z是纯虚数,求m的值;
(2)若在复平面内复数z对应的点位于第四象限,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A={x|x2-8x+15=0},B={x|ax-1=0},若A∩B=B,则实数a组成的集合是$\{0,\frac{1}{3},\frac{1}{5}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若圆C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0上有四个不同的点到直线l:x-y+c=0的距离为2,则c的取值范围是(  )
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-2,2)D.(-2$\sqrt{2}$,2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处切线方程是y=5x-10
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+$\frac{1}{3}$mx,若函数g(x)存在极值,求实数m的取值范围.

查看答案和解析>>

同步练习册答案