分析 由题意,△PF1F2的内切圆的圆心的横坐标为a,若△PF1F2的内切圆半径为1且圆心G到原点O的距离为$\sqrt{5}$,求出a,利用双曲线的定义及面积公式,求出b,即可得出双曲线的方程.
解答
解:由题意,△PF1F2的内切圆的圆心的横坐标为a,
若△PF1F2的内切圆半径为1且圆心G到原点O的距离为$\sqrt{5}$,
则a2+1=5,∴a=2,
设|PF1|=m,|PF2|=n(m>n),则$\left\{\begin{array}{l}{m-n=4}\\{\frac{1}{2}×2c×\frac{5}{2}=\frac{1}{2}(m+n+2c)}\end{array}\right.$,∴n=$\frac{3}{2}$c-2,
∵点P(x0,$\frac{5}{2}$)为双曲线上一点,
∴$\frac{n}{{x}_{0}-\frac{4}{c}}$=$\frac{c}{2}$,∴n=$\frac{c}{2}{x}_{0}$-2,∴$\frac{c}{2}{x}_{0}$-2=$\frac{3}{2}$c-2,∴x0=3,
∴$\frac{9}{4}-\frac{\frac{25}{4}}{{b}^{2}}$=1,∴b=$\sqrt{5}$,
∴双曲线方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1.
故答案为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1
点评 本题考查双曲线的方程与性质,考查三角形的内切圆,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | cos10° | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {3} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<$\frac{1}{3}$ | B. | $\frac{1}{3}$<a<$\frac{2}{3}$ | C. | a>1 | D. | $\frac{1}{3}$<a<$\frac{2}{3}$或a>1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com