精英家教网 > 高中数学 > 题目详情
20.若椭圆${x^2}+\frac{y^2}{2}=1$的两个焦点是F1,F2,点P在椭圆上,且PF1⊥F1F2,那么|PF2|=(  )
A.2B.4C.$\frac{5}{2}\sqrt{2}$D.$\frac{3}{2}\sqrt{2}$

分析 求得椭圆的a,b,c,由题意可得P的坐标,再由椭圆的定义计算即可得到所求值.

解答 解:椭圆${x^2}+\frac{y^2}{2}=1$的a=$\sqrt{2}$,b=1,c=1,
由PF1⊥F1F2,可得yP=-1,xP=±$\sqrt{1-\frac{1}{2}}$=±$\frac{\sqrt{2}}{2}$,
即有|PF1|=$\frac{\sqrt{2}}{2}$,
由题意的定义可得,|PF2|=2a-|PF1|=2$\sqrt{2}$-$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{2}}{2}$.
故选:D.

点评 本题考查椭圆的方程的运用,以及椭圆的定义,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,则a2016的值为$\frac{1}{2014}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax+b(a,b∈R).
(I)a=-4时,若关于x的方程|f(x)|=1在区间[0,4]内有四个不同的根,求b的取值范围;
(Ⅱ)记函数g(x)=|f(x)|在区间[0,4]上的最大值为M(a,b),求证:当一8≤a≤0时,有M(a,b)≥$\frac{1}{8}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知过点(-1,3),(2,a)的直线的倾斜角为45°,则a的值为(  )
A.6B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式x2-x>0的解集是(  )
A.(1,+∞)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F1(-c,0),F2(c,0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,P在椭圆上,且△PF1F2的面积为$\frac{{\sqrt{2}}}{2}{b^2}$,则cos∠F1PF2=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=sinx-cos(x+\frac{π}{6}),x∈[0,π]$的值域是(  )
A.$[-2,\sqrt{3}]$B.$[-\frac{{\sqrt{3}}}{2},1]$C.$[-\sqrt{3},\sqrt{3}]$D.$[-\frac{{\sqrt{3}}}{2},\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在(-∞,0)上为减函数的是(  )
A.$y={x^{\frac{2016}{2015}}}$B.$y={x^{\frac{2013}{2015}}}$C.$y={x^{-\frac{2014}{2015}}}$D.$y={x^{-\frac{2015}{2016}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥E-ABC中,平面EAB⊥平面ABC,三角形EAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB、EA中点.
(1)求证:EB∥平面MOC;
(2)求证:平面MOC⊥平面EAB;
(3)求三棱锥E-ABC的体积.

查看答案和解析>>

同步练习册答案