精英家教网 > 高中数学 > 题目详情
8.已知g(x)=bx2+cx+1,f(x)=x2+ax+lnx+1,g(x)在x=1处的切线为y=2x
(1)求b,c的值
(2)若a=-3,求f(x)的极值
(3)设h(x)=f(x)-g(x),是否存在实数a,当x∈(0,e],(e≈2.718,为自然常数)时,函数h(x)的最小值为3.

分析 (1)求出函数g(x)的导数,求得切线的斜率,由已知切线方程,可得2b+c=2,b+c+1=2,解得b,c即可;
(2)求出f(x)的导数,令导数大于0,得增区间,令导数小于0,得减区间,即可得到极值;
(3)求出h(x)的导数,讨论①当a≥0时,②当a<0时,当-$\frac{1}{e}$≤a<0时,当a≤-$\frac{1}{e}$时,通过单调性判断函数的最值情况,即可判断是否存在.

解答 解:(1)g(x)=bx2+cx+1的导数为g′(x)=2bx+c,
g(x)在x=1处的切线斜率为2b+c,
由g(x)在x=1处的切线为y=2x,
则2b+c=2,b+c+1=2,
解得b=1,c=0;
(2)若a=-3,则f(x)=x2-3x+lnx+1,
f′(x)=2x-3+$\frac{1}{x}$=$\frac{2{x}^{2}-3x+1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
当x>1或0<x<$\frac{1}{2}$时,f′(x)>0,f(x)递增;
当$\frac{1}{2}$<x<1时,f′(x)<0,f(x)递减.
即有x=1处,f(x)取得极小值,且为-1,
x=$\frac{1}{2}$处,f(x)取得极大值,且为-$\frac{1}{4}$-ln2.
(3)h(x)=f(x)-g(x)=x2+ax+lnx+1-(x2+1)=ax+lnx,
①当a≥0时,h(x)在(0,e]递增,x=e处取得最大值,没有最小值;
②当a<0时,h′(x)=a+$\frac{1}{x}$=$\frac{ax+1}{x}$,
若e≤-$\frac{1}{a}$即-$\frac{1}{e}$≤a<0,则h′(x)>0,h(x)递增,则有最大值,没有最小值;
若e>-$\frac{1}{a}$即a≤-$\frac{1}{e}$,则在0<x<-$\frac{1}{a}$,h′(x)>0,h(x)递增,
在-$\frac{1}{a}$<x<e,h′(x)<0,h(x)递减.
则有x=-$\frac{1}{a}$处取得极大值,且为最大值,没有最小值.
故不存在实数a,当x∈(0,e],(e≈2.718,为自然常数)时,
函数h(x)的最小值为3.

点评 本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查存在性问题的解法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an},对任意n∈N*,都有$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+$\frac{{a}_{3}-1}{{2}^{3}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.以正棱柱两个底面的内切圆面为底面的圆柱叫做它的内切圆柱,以正棱柱两个底面的外接圆面为底面的圆柱叫做它的外接圆柱.
(Ⅰ)求正三棱柱与它的外接圆柱的体积之比;
(Ⅱ)若正三棱柱的高为6cm,其内切圆柱的体积为24πcm3,求正三棱柱的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,E为CD上一点,且DE=1,EC=2,现沿BE折叠使平面BCE⊥平面ABED,F为BE的中点.图2所示.
(1)求证:AE⊥平面BCE;
(2)能否在边AB上找到一点P使平面ACE与平面PCF所成角的余弦值为$\frac{2}{3}$?若存在,试确定点P的位置,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知多面体ABDEC中,底面△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,且EC,DB在平面ABC的同侧,M为EA的中点,CE=CA=2DB=2
(Ⅰ)求证:DM∥平面ABC;
(Ⅱ)求证:平面DEA⊥平面ECA;
(Ⅲ)求此多面体ABDEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解不等式:2<ex+$\frac{1}{{e}^{x}}$<2b-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.3${\;}^{\frac{1}{3}}$+$\frac{i}{({3}^{\frac{1}{3}}-i)^{3}}$=$\frac{10+10•{3}^{\frac{1}{3}}+6•{3}^{\frac{2}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}$$+\frac{3-3•{3}^{\frac{1}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在长方体ABCD-A1B1C1D1中,AA1=1,AB=BC=2,若M为四面体C1BCD内的点(包含边界),则直线A1M与平面A1B1C1D1所成角的余弦值的余弦的最小值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)在[0,+∞)上是单调函数且y=f(x+1)的图象关于直线x=-1对称,则方程f(x)=f(x+$\frac{3}{x+4}$)的所有实数根的和-4.

查看答案和解析>>

同步练习册答案