精英家教网 > 高中数学 > 题目详情
已知复数z=(m2-8m+15)+(m2-9m+18)i,实数m取什么值时,
(1)复数z是实数;      
(2)复数z是纯虚数;       
(3)复数z对应的点位于第三象限.
考点:复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:(1)由复数z是实数,可得:虚部m2-9m+18=0,解得即可;
(2)由 复数z是纯虚数,可得
m2-8m+15=0
m2-9m+18≠0
,解得即可;
(3)由复数z对应的点位于第三象限,可得
m2-8m+15<0
m2-9m+18<0
解答: 解:(1)∵复数z是实数,∴虚部m2-9m+18=0,解得m=3或6;
(2)∵复数z是纯虚数,∴
m2-8m+15=0
m2-9m+18≠0
,解得m=5;
(3)由复数z对应的点位于第三象限,∴
m2-8m+15<0
m2-9m+18<0

解得3<m<5.
因此当3<m<5时,复数z对应的点位于第三象限.
点评:本题考查了复数为实数及纯虚数的条件、复数的几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数{an}是等比数列,且首项a1=
1
2
,a4=
1
16

(1)求数列{an}的通项公式;
(2)若bn=log2
1
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log2(2x-x2),且关于x的方程2f(x)=kx+1有两个不相等的实根x1,x2
(1)求f(x)的定义域;
(2)求k的取值范围M;
(3)是否存在实数n,使得不等式n2+tn+1>2|x1-x2|对任意的k∈M及t∈[-1,1]恒成立?若存在,求出n的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x 
2
3
+3x2n的展开式中,各项系数和比它的二项式系数和大992,求:
(1)展开式中二项式系数最大的项;
(2)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)若点P(x,y)在曲线|x|+|y|=1上(xy≠0),求证:
x2
|y|
+
y2
|x|
≥1.
(Ⅱ)已知CD为△ABC外接圆的切线,AB的延长线交CD于点D,点E,F分别在弦AB与弦AC上,且BC•AE=DC•AF,B,E,F,C四点共圆,证明:△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d不为零,Sn为其前n项和,S6=5S3
(Ⅰ)求证:a2,a3,a5成等比数列;
(Ⅱ)若a2=2,且a2,a3,a5为等比数列{bn}的前三项,求数列|
Sn+1
bn
|的最大项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,若f(1)=0,f′(1)=0,但x=1不是函数f(x)的极值点,则abc的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义一种向量运算“?”:
a
?
b
=
a•b,a,b不共线
a+b,a,b共线
a
b
是任意的两上向量).若p=(1,-2),q=(-2,4),r=(3,4),则(p?q)?r=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现2次停止,用X表示取球的次数,则P(X=3)=
 

查看答案和解析>>

同步练习册答案