精英家教网 > 高中数学 > 题目详情
19.已知:a>0且a≠1.设p:指数函数y=ax在R上是减函数;q:曲线y=x2-4x+a-3与x轴交于不同的两点.若“p或q”为真,“p且q”为假,求实数a的取值范围.

分析 若p为真,则0<a<1.若q为真,则△>0,解得0<a<7且a≠1,由于“p或q”为真,“p且q”为假,可得p、q一真一假,解出即可.

解答 解:若p为真,则0<a<1.
若q为真,则△=(-4)2-4(a-3)>0,
解得a<7,又a>0且a≠1,∴0<a<7且a≠1,
∵“p或q”为真,“p且q”为假,
∴p、q一真一假,
若p真q假,则不存在满足条件的a;
若p假q真,则1<a<7,
综上可得:a的取值范围为(1,7).

点评 本题考查了复合命题真假的判定方法、函数的单调性、二次函数与判别式的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.复数ω=$\frac{3i-1}{i}$的虚部和模依次是(  )
A.3,2$\sqrt{2}$B.3i,$\sqrt{10}$C.1,$\sqrt{10}$D.-1,2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$)∪(π,$\frac{5π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$)∪(π,$\frac{5π}{4}$)C.($\frac{π}{2}$,$\frac{3π}{4}$)∪($\frac{5π}{4}$,$\frac{3π}{2}$)D.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设{an}是由正数组成的等差数列,{bn}是由正数组成的等比数列,且a1=b1,a2015=b2015,则必有(  )
A.a1008>b1008B.a1008=b1008C.a1008≥b1008D.a1008≤b1008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线y=(3a-1)x+a-1,为使这条直线经过第一、三、四象限,则实数a的取值范围是$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于下列命题
①函数y=4sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0);
②函数y=sin(x+$\frac{π}{4}$)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;
③函数y=cos2($\frac{π}{4}$-x)是偶函数;
④函数y=tanx在第一象限是增函数;
其中正确命题序号为①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合M={1,(m2-2m)+(m2+m-2)i},N={-1,1,4i},若M∪N=N,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的三边长为a、b、c,且其中任意两边长均不相等.若$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列.
(Ⅰ)比较$\frac{b}{a}$与$\frac{c}{b}$的大小,并证明你的结论.
(Ⅱ)求证:B不可能是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,以直线l:x=-2为准线,且过点(0,1).
(1)求椭圆C的方程;
(2)若⊙O:x2+y2=r2与椭圆C恰有两个公共点,试求⊙O的方程.

查看答案和解析>>

同步练习册答案