精英家教网 > 高中数学 > 题目详情
15.对于数列{an},定义其积数是Vn=$\frac{{{a_1}•a{\;}_2•a{\;}_3…{a_n}}}{n},({n∈{N_+}})$.
(1)若数列{an}的积数是Vn=n+1,求an
(2)等比数列{an}中,a2=3,a3是a2和a4的等差中项,若数列{an}的积数Vn满足Vn≥$\frac{2t-1}{n}$对一切n∈N+恒成立,求实数t的取值范围.

分析 (1)由新定义,可将n换为n-1,两式相除,即可得到数列{an}的通项,注意检验首项;
(2)运用等差数列的性质和等比数列的通项公式,由不等式恒成立思想转化为求数列的最值,即可得到t的范围.

解答 解:(1)∵Vn=n+1,∴a1•a2•a3•…•an=n(n+1)…①
当n≥2,∴a1•a2•a3…an-1=(n-1)•n…②
$\frac{①}{②}$得:${a_n}=\frac{n+1}{n-1}$,
当n=1,a1=V1=2,
∴${a_n}=\left\{\begin{array}{l}2\\ \frac{n+1}{n-1}\end{array}\right.$$\begin{array}{l}{({n=1})}\\{({n≥2,n∈{N_+}})}\end{array}$;
(2)设等比数列{an}的公比为q,
∵a3是a2和a4的等差中项,且a2=3,
∴2a3=a2+a4
$2{a_2}•q={a_2}+{a_2}{q^2}$,
q2-2q+1=0,即(q-1)2=0,
∴q=1,
∴${a_n}=3,则{V_n}=\frac{3^n}{n}≥\frac{2t-1}{n}({n∈{N_+}})$恒成立,
即2t-1≤(3nmin
即2t-1≤3即t≤2.

点评 本题考查新定义的理解和运用,主要考查等差数列的性质和等比数列的通项公式的运用,考查不等式恒成立问题转化为求最值,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为$\frac{3}{4}$,乙队猜对前两条的概率均为$\frac{4}{5}$,猜对第3条的概率为$\frac{1}{2}$.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,75)中的频数为100,则n的值为1000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB为圆O的直径,E是圆O上不同于A、B的动点,四边形ABCD为矩形,平面ABCD⊥平面ABE,F是DE的中点.
(Ⅰ)求证:OF∥平面BCE;
(Ⅱ)平面ADE⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知两个数列{an},{bn},其中{an}是等比数列,且a2=$\frac{1}{4}$,a5=-$\frac{1}{32}$,bn=$\frac{1}{3}$(1-an).
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设{bn}的前n项和为Sn,求证:Sn≥$\frac{n}{3}$+$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{1}{a{x}^{2}-1}$(a>0)的图象很像网络流行的“囧”字的内部,我们不妨把它称为“囧函数”,现有以下命题,其中正确的是①③.(写出所有正确结论的序号)
①f(x)的图象不关于原点对称
②f(x)的最小值为-1
③对于定义域内任意两正数m、n,若m<n.则f(m)>f(n)
④f(x)的导函数f′(x)有零点
⑤对于(-$\frac{\sqrt{a}}{a}$,$\frac{\sqrt{a}}{a}$)上的任意实数m,n,恒有$\frac{f(m)+f(n)}{2}$≥f($\frac{m+n}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={-1,1},B={x|x<a},若A∩B=∅,则(  )
A.a≤-1B.a≥-1C.a≤1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知logax>logay(0<a<1),则下列不等式恒成立的是(  )
A.y2<x2B.tanx<tanyC.$\frac{1}{y}$<$\frac{1}{x}$D.$\sqrt{y}$<$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)截抛物线y2=4x的准线所得线段长为b,则a=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案