5£®Ä³Ð£ÎªÑ¡°Î²Î¼Ó¡°ÑëÊӲµÆÃÕ´óÈü¡±µÄ¶ÓÔ±£¬ÔÚУÄÚ×éÖ¯²ÂµÆÃÕ¾ºÈü£®¹æ¶¨£ºµÚÒ»½×¶Î֪ʶ²âÊԳɼ¨²»Ð¡ÓÚ160·ÖµÄѧÉú½øÈëµÚ¶þ½×¶Î±ÈÈü£®ÏÖÓÐ200ÃûѧÉú²Î¼Ó֪ʶ²âÊÔ£¬²¢½«ËùÓвâÊԳɼ¨»æÖƳÉÈçÏÂËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ñ£©¹ÀËãÕâ200ÃûѧÉú²âÊԳɼ¨µÄÖÐλÊý£¬²¢Çó½øÈëµÚ¶þ½×¶Î±ÈÈüµÄѧÉúÈËÊý£»
£¨¢ò£©½«½øÈëµÚ¶þ½×¶ÎµÄѧÉú·Ö³ÉÈô¸É¶Ó½øÐбÈÈü£®Ïּס¢ÒÒÁ½¶ÓÔÚ±ÈÈüÖоùÒÑ»ñµÃ120·Ö£¬½øÈë×îºóÇÀ´ð½×¶Î£®ÇÀ´ð¹æÔò£ºÇÀµ½µÄ¶Óÿ´ÎÐè²Â3ÌõÃÕÓ²Â¶Ô1ÌõµÃ20·Ö£¬²Â´í1Ìõ¿Û20·Ö£®¸ù¾Ý¾­Ñ飬¼×¶Ó²Â¶ÔÿÌõÃÕÓïµÄ¸ÅÂʾùΪ$\frac{3}{4}$£¬ÒҶӲ¶ÔǰÁ½ÌõµÄ¸ÅÂʾùΪ$\frac{4}{5}$£¬²Â¶ÔµÚ3ÌõµÄ¸ÅÂÊΪ$\frac{1}{2}$£®ÈôÕâÁ½¶ÓÇÀµ½´ðÌâµÄ»ú»á¾ùµÈ£¬Äú×öΪ³¡Íâ¹ÛÖÚÏëÖ§³ÖÕâÁ½¶ÓÖеÄÓÅʤ¶Ó£¬»á°ÑÖ§³ÖƱͶ¸øÄĶӣ¿

·ÖÎö £¨¢ñ£©Éè²âÊԳɼ¨µÄÖÐλÊýΪx£¬ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖÐxÁ½²àµÄ¾ØÐεÄÃæ»ýÏàµÈÁÐʽÇóµÃxÖµ£¬ÔòÖÐλÊý¿ÉÇó£¬ÔÙÓÉ200¡Á£¨0.003+0.0015£©¡Á20ÇóµÃ½øÈëµÚ¶þ½×¶ÎµÄѧÉúÈËÊý£»
£¨¢ò£©Éè×îºóÇÀ´ð½×¶Î¼×¡¢ÒÒÁ½¶Ó²Â¶ÔµÆÃÕµÄÌõÊý·Ö±ðΪ¦Î¡¢¦Ç£¬Ôò¦Î·þ´ÓB£¨3£¬$\frac{3}{4}$£©·Ö²¼£¬ÓÉ´ËÇóµÃE¦Î£¬½øÒ»²½ÇóµÃ×îºóÇÀ´ð½×¶Î¼×¶ÓµÃ·ÖµÄÆÚÍû£¬È»ºóÇó³öE¦Ç£¬ÔÙÇó³ö×îºóÇÀ´ð½×¶ÎÒÒ¶ÓµÃ·ÖµÄÆÚÍû£¬±È½ÏÆÚÍûºóµÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©Éè²âÊԳɼ¨µÄÖÐλÊýΪx£¬ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃ£¬
£¨0.0015+0.019£©¡Á20+£¨x-140£©¡Á0.025=0.5£¬
½âµÃ£ºx=143.6£®
¡à²âÊԳɼ¨ÖÐλÊýΪ143.6£®
½øÈëµÚ¶þ½×¶ÎµÄѧÉúÈËÊýΪ200¡Á£¨0.003+0.0015£©¡Á20=18ÈË£®
£¨¢ò£©Éè×îºóÇÀ´ð½×¶Î¼×¡¢ÒÒÁ½¶Ó²Â¶ÔµÆÃÕµÄÌõÊý·Ö±ðΪ¦Î¡¢¦Ç£¬
Ôò¦Î¡«B£¨3£¬$\frac{3}{4}$£©£¬
¡àE£¨¦Î£©=$3¡Á\frac{3}{4}=\frac{9}{4}$£®
¡à×îºóÇÀ´ð½×¶Î¼×¶ÓµÃ·ÖµÄÆÚÍûΪ[$\frac{9}{4}-£¨3-\frac{9}{4}£©$]¡Á20=30£¬
¡ßP£¨¦Ç=0£©=$£¨\frac{1}{5}£©^{2}¡Á\frac{1}{2}=\frac{1}{50}$£¬
P£¨¦Ç=1£©=$2¡Á\frac{4}{5}¡Á\frac{1}{5}¡Á\frac{1}{2}+£¨\frac{1}{5}£©^{2}¡Á\frac{1}{2}=\frac{9}{50}$£¬
P£¨¦Ç=2£©=$£¨\frac{4}{5}£©^{2}¡Á\frac{1}{2}+2¡Á\frac{4}{5}¡Á\frac{1}{5}¡Á\frac{1}{2}=\frac{12}{25}$£¬
P£¨¦Ç=3£©=$£¨\frac{4}{5}£©^{2}¡Á\frac{1}{2}=\frac{16}{50}$£¬
¡àE¦Ç=$0+1¡Á\frac{9}{50}+2¡Á\frac{12}{25}+3¡Á\frac{16}{50}=\frac{21}{10}$£®
¡à×îºóÇÀ´ð½×¶ÎÒÒ¶ÓµÃ·ÖµÄÆÚÍûΪ[$\frac{21}{10}-£¨3-\frac{21}{10}£©$]¡Á20=24£®
¡à120+30£¾120+24£¬
¡àÖ§³ÖƱͶ¸ø¼×¶Ó£®

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²é¸ÅÂÊ¡¢¸ÅÂÊÓëͳ¼ÆµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢Êý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¼°Ó¦ÓÃÒâʶ£¬¿¼²é»òÈ»Óë±ØÈ»µÄ˼Ï룬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=lnx-$\frac{1}{2}$ax2-bxͼÏóÔڵ㣨1£¬1£©´¦µÄÇÐÏß·½³ÌΪl£º2x-y-1=0£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èô·½³Ì2mf£¨x£©=x2£¨m£¾0£©ÓÐΨһʵÊý½â£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª·½³Ìx2-£¨tan¦Á+$\frac{1}{tan¦Á}$£©x+1=0µÄÒ»¸ö¸ùÊÇ2+$\sqrt{3}$£¬Ôòsin2¦Á=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔoxÖáΪʼ±ß£¬Èñ½Ç¦ÁµÄÖÕ±ßÓ뵥λԲÔÚµÚÒ»ÏóÏÞ½»ÓÚµãA£¬ÇÒµãAµÄ×Ý×ø±êΪ$\frac{{\sqrt{10}}}{10}$£¬Èñ½Ç¦ÂµÄÖÕ±ßÓëÉäÏßx-7y=0£¨x¡Ý0£©Öغϣ®
£¨1£©Çótan¦ÁºÍtan¦ÂµÄÖµ£»
£¨2£©Çó2¦Á+¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚ¼«×ø±êϵÖУ¬Ö±Ïßl£º$\left\{\begin{array}{l}x=1+t\\ y=1+2t\end{array}\right.$£¨tΪ²ÎÊý£©±»ÇúÏßC£º¦Ñ=2cos¦ÈËù½ØµÃµÄÏ߶γ¤Îª$\frac{4\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®É踴Êýz=$\frac{1+5i}{1-i}$£¨iΪÐéÊýµ¥Î»£©ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÊµÊýx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x-y¡Ý0}\\{x+y¡Ü0}\\{y¡Ý-2}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=x+3yµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®-12B£®-8C£®-4D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®£¨1-$\frac{1}{3x}$£©4Õ¹¿ªÊ½Öк¬x-3ÏîµÄϵÊýÊÇ$-\frac{4}{27}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¶ÔÓÚÊýÁÐ{an}£¬¶¨ÒåÆä»ýÊýÊÇVn=$\frac{{{a_1}•a{\;}_2•a{\;}_3¡­{a_n}}}{n}£¬£¨{n¡Ê{N_+}}£©$£®
£¨1£©ÈôÊýÁÐ{an}µÄ»ýÊýÊÇVn=n+1£¬Çóan£»
£¨2£©µÈ±ÈÊýÁÐ{an}ÖУ¬a2=3£¬a3ÊÇa2ºÍa4µÄµÈ²îÖÐÏÈôÊýÁÐ{an}µÄ»ýÊýVnÂú×ãVn¡Ý$\frac{2t-1}{n}$¶ÔÒ»ÇÐn¡ÊN+ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸