精英家教网 > 高中数学 > 题目详情
16.已知方程x2-(tanα+$\frac{1}{tanα}$)x+1=0的一个根是2+$\sqrt{3}$,则sin2α=$\frac{1}{2}$.

分析 设此方程的另一个根为m,则(2+$\sqrt{3}$)m=1,解得m=2-$\sqrt{3}$.利用根与系数的关系可得tanα+$\frac{1}{tanα}$=4,利用同角三角函数基本关系式即可得出.

解答 解:设此方程的另一个根为m,则(2+$\sqrt{3}$)m=1,解得m=2-$\sqrt{3}$.
∴(2+$\sqrt{3}$)+(2-$\sqrt{3}$)=tanα+cotα,
∴tanα+$\frac{1}{tanα}$=4,
∴$\frac{sinα}{cosα}+\frac{cosα}{sinα}$=4,
∴sinαcosα=$\frac{1}{4}$,sin2α=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了同角三角函数基本关系式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过M(2,2e),$N(2e,\sqrt{3})$两点,其中e为椭圆的离心率,O为坐标原点.
(I)求椭圆E的方程;
(II)过椭圆右焦点F的一条直线l与椭圆交于A,B两点,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|=|{\overrightarrow{AB}}$|,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,已知A1B1C1-ABC是正棱柱,D是AC的中点,AB1⊥BC1,求二面角D-BC1-C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知锐角三角形ABC的三边为连续整数,且角A、B满足A=2B.
(1)求角B的取值范围及△ABC三边的长;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在四面体S-ABC中,SA⊥平面ABC,SA=AB=AC=BC=2,则该四面体外接球的表面积是(  )
A.B.C.$\frac{28π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知弹簧下方挂的小球做上下振动时,小球离开平衡位置的距离S与t的函数关系为S=Asin(ωt+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$,t≥0),如图是其图象的一部分,试根据图象回答下列问题:
(1)求小球振动时的振幅和周期;
(2)求S与t的函数解析式;
(3)当t∈(5,8),求小球离开平衡位置的距离为$\sqrt{2}$的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=90°(其中O为原点),则k的值为(  )
A.$\sqrt{2}$B.1C.$-\sqrt{2}$或$\sqrt{2}$D.-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为$\frac{3}{4}$,乙队猜对前两条的概率均为$\frac{4}{5}$,猜对第3条的概率为$\frac{1}{2}$.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,75)中的频数为100,则n的值为1000.

查看答案和解析>>

同步练习册答案