精英家教网 > 高中数学 > 题目详情
如果sin(3π+θ)=
1
4
,求:
cos(π+θ)
cosθ[cos(π+θ)-1]
+
cos(θ-2π)
cos(θ+2π)cos(π+θ)+cos(-θ)
的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由已知等式求出sinθ的值,原式利用诱导公式化简后,再利用同角三角函数间基本关系整理后,将sinθ的值代入计算即可求出值.
解答: 解:∵sin(3π+θ)=-sinθ=
1
4
,即sinθ=-
1
4

∴原式=
-cosθ
-cos2θ-cosθ
+
cosθ
-cos2θ+cosθ
=
1
cosθ+1
+
1
1-cosθ
=
2
sin2θ
=-8.
点评:此题考查了运用诱导公式化简求值,以及三角函数的化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ,cosθ是关于x的方程“2x2+mx-
24
25
=0”的两根
(1)求实数m的值;       
(2)求sin(
π
2
-θ)+sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是方程x2+px+q=0(p2-4q>0)的解集,A={1,3,5,7,9},B={1,4,7,10}若M∩A=φ,且M∪B=B,试求p、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,且(b+c-a)(b+c+a)=3bc.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB、sinA、sinC成等比数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

国家环保部于2012年发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
(0,25],4天;(25,50],10天;(50,75],4天;(75,100),2天
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的6天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若居民应交水费y(元)与用水量x(吨)的函数关系如图所示.
(1)写出y=f(x)的解析式;
(2)若某用户该月用水21吨,则该用户需要缴水费多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示的几何体的三视图,求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x2+1
,x∈[-1,1]为奇函数.
(1)求f(
1
2
)的值;
(2)判断f(x)在定义域上单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(-1,y)在
2
3
π的终边上,则y=
 

查看答案和解析>>

同步练习册答案