精英家教网 > 高中数学 > 题目详情

【题目】已知某中学高一、高二、高三三个年级的青年学生志愿者人数分别为180,120,60,现采用分层抽样的方法从中抽取6名同学去森林公园风景区参加“保护鸟禽,爱我森林”宣传活动.

1)应从高一、高二、高三三个年级的学生志愿者中分别抽取多少人?

2)设抽取的6名同学分别用ABCDEF表示,现从中随机抽取2名学生承担分发宣传材料的工作设事件M=“抽取的2名学生来自高一年级”,求事件M发生的概率.

【答案】1)从高一、高二、高三三个年级的学生志愿者中分别抽取3人,2人,1人,(2

【解析】

(1)根据分层抽样的方法求解即可.

(2)利用古典概型的方法枚举所有基本事件求解即可.

1)由己知,高一、高二、高三三个年级的学生志愿者人数之比为321

由于采用分层抽样的方法从中抽取6名学生,抽样比为

故从高一、高二、高三三个年级的学生志愿者中分别抽取3人,2人,1人.

2)从抽取的6名学生中随机抽取2名同学的所有可能结果为,共15种.

不妨设抽取的6名学生中,来自高一的是ABC,则从抽取的6名学生中随机抽取2名同学来自高一年级的所有可能结果为3种,

所以事件M发生的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求的值;

(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?

(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)


参加书法社团

未参加书法社团

参加演讲社团



未参加演讲社团



1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;

2)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数x,满足,则称局部奇函数为定义在上的局部奇函数q:曲线x轴交于不同的两点。

(1)p为真时,求m的取值范围.

(2)为真命题,且为假命题,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:

47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49

37 35 34 43 46 36 38 40 39 32 48 33 40 34

)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为满意,否则为不满意,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

16

14

合计

30

)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若点的直角坐标为,曲线与直线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左顶点在圆上.

(1)求椭圆的方程;

(2)若点为椭圆上不同于点 的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,在定义域内恒成立,求实数的值.

查看答案和解析>>

同步练习册答案