精英家教网 > 高中数学 > 题目详情
3.在△ABC中,A、B、C的对边分别为a、b、c,且bcosC=3acosB-ccosB,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

分析 由条件bcosC=3acosB-ccosB,利用正弦定理求得cosB的值,可得sinB的值;再根据 $\overrightarrow{BA}$•$\overrightarrow{BC}$=2利用两个向量的数量积的定义求得ac的值,可得△ABC的面积$\frac{1}{2}$ac•sinB 的值.

解答 解:△ABC中,∵bcosC=3acosB-ccosB,利用正弦定理可得sinBcosC=3sinAcosB-sinCcosB,
∴sin(B+C)=3sinAcosB,即sinA=3sinAcosB,求得cosB=$\frac{1}{3}$,∴sinB=$\frac{2\sqrt{2}}{3}$.
再根据 $\overrightarrow{BA}$•$\overrightarrow{BC}$=2,可得c•a•cosB=2,∴ac=6,∴△ABC的面积为$\frac{1}{2}$ac•sinB=2$\sqrt{2}$,
故选:C.

点评 本题主要考查正弦定理,两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱外接球的表面积为(  )
A.16πB.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=4x,直线l经过该抛物线的焦点F与抛物线交于A、B两点(A点在第一象限),且$\overrightarrow{BA}$=4$\overrightarrow{BF}$,则三角形AOB(O为坐标原点)的面积为(  )
A.$\frac{8\sqrt{3}}{3}$B.$\frac{8\sqrt{2}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知两定点A(-1,0),B(1,0),若直线l上存在点M,使得|MA|+|MB|=3,则称直线l为“M型直线”,给出下列直线:①x=2;②y=x+3;③y=-2x-1;④y=1;⑤y=2x+3.其中是“M型直线”的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知幂函数f(x)的图象经过点(2,$\sqrt{2}$),且f(2m+1)>f(m2+m-1),则m的取值范围是[$\frac{-1+\sqrt{5}}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f′(x)为f(x)的导函数,若f′(x)存在极小值点x0,则称x0为f(x)的“下凸拐点”.
(1)f(x)=x3的“下凸拐点”为0;
(2)f(x)=ex-$\frac{1}{2}a{x^3}$在区间(0,2)上存在“下凸拐点”,则a的取值范围为$(\frac{e}{3},\frac{{e}^{2}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点与抛物线y2=-8x的焦点重合,斜率为1的直线l与双曲线交于A、B两点,若A,B中点坐标为(-3,-1),则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{3}$D.$\frac{2}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.画出不等式组$\left\{\begin{array}{l}-x+y-2≤0\\ x+y-4≤0\\ x-3y+3≤0\end{array}\right.$表示的平面区域,若z=x+y,求出z的最大值和最小值.

查看答案和解析>>

同步练习册答案