ÈôÓÐÇîÊýÁÐ{an}Âú×㣺a1=an£¬a2=an-1£¬¡­£¬an=a1£¬¼´ai=an-i+1£¨iÊÇÕýÕûÊý£¬ÇÒ1¡Üi¡Ün£©¾Í³ÆÊýÁÐ{an}Ϊ¶Ô³ÆÊýÁУ®
£¨1£©ÒÑÖªÊýÁÐ{bn}ÊÇÏîÊýΪ7µÄ¶Ô³ÆÊýÁУ¬ÇÒb1£¬b2£¬b3£¬b4³ÉµÈ²îÊýÁУ¬b1=2£¬b4=11£¬ÊÔд³öÊýÁÐ{bn}µÄÿһÏ
£¨2£©ÒÑÖªÊýÁÐ{cn}ÊÇÏîÊýΪ2k-1£¨k£¾1£©µÄ¶Ô³ÆÊýÁУ¬ÇÒck£¬ck+1£¬ck+2£¬¡­£¬c2k-1¹¹³ÉÊ×ÏîΪ50£¬¹«²îΪ-4µÄµÈ²îÊýÁУ¬ÊýÁÐ{cn}µÄǰ2k-1ÏîºÍΪs2k-1£¬ÎÊkΪºÎֵʱs2k-1È¡µÃ×î´óÖµ£¬×î´óֵΪ¶àÉÙ£¿
£¨3£©¶ÔÓÚ¸ø¶¨µÄÕýÕûÊým£¾1£¬ÊÔд³öËùÓÐÏîÊý²»³¬¹ý2mµÄ¶Ô³ÆÊýÁУ¬Ê¹µÃ1¡¢3¡¢5¡¢¡­¡¢2m-1³ÉΪÊýÁÐÖеÄÁ¬ÐøÏµ±m¡Ý1500ʱ£¬ÊÔÇóÆäÖÐÒ»¸öÊýÁеÄǰ2014ÏîºÍs2014£®
¿¼µã£ºÊýÁеÝÍÆÊ½
רÌ⣺×ÛºÏÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©Éè{bn}µÄ¹«²îΪd£¬ÓÉb1£¬b2£¬b3£¬b4³ÉµÈ²îÊýÁÐÇó½âd´Ó¶øÇóµÃÊýÁÐ{bn}£¬
£¨2£©Ïȵõ½S2k-1=-4£¨k-13£©2+4¡Á132-50£¬Óöþ´Îº¯ÊýÇó½â£¬
£¨3£©°´ÕÕ1£¬3£¬5¡­£¬2m-1ÊÇÊýÁÐÖеÄÁ¬ÐøÏî°´ÕÕ¶¨Ò壬ÓÃ×éºÏµÄ·½Ê½Ð´³öÀ´ËùÓпÉÄܵÄÊýÁУ¬ÔÙ°´ÆäÊýÁеĹæÂÉÇóǰnÏîºÍÈ¡·ûºÏÌõ¼þµÄÒ»×é¼´¿É£®
½â´ð£º ½â£º£¨1£©Éè{bn}µÄ¹«²îΪd£¬Ôòb4=b1+3d=2+3d=11£¬½âµÃd=3£¬
¡àÊýÁÐ{bn}Ϊ2£¬5£¬8£¬11£¬8£¬5£¬2£®
£¨2£©S2k-1=c1+c2+¡­+ck-1+ck+ck+1+¡­+c2k-1=2£¨ck+ck+1+¡­+c2k-1£©-ck£¬
¡àS2k-1=-4£¨k-13£©2+4¡Á132-50£¬
¡àµ±k=13ʱ£¬S2k-1È¡µÃ×î´óÖµ£®S2k-1µÄ×î´óֵΪ626£®
£¨3£©ËùÓпÉÄܵġ°¶Ô³ÆÊýÁС±ÊÇ£º
¢Ù1£¬3£¬5£¬¡­£¬2m-1£¬2m-3£¬¡­£¬5£¬3£¬1£»
¢Ú1£¬3£¬5£¬¡­£¬2m-1£¬2m-1£¬2m-3£¬¡­£¬5£¬3£¬1£»
¢Û2m-1£¬2m-3£¬¡­£¬5£¬3£¬1£¬3£¬5£¬¡­£¬2m-3£¬2m-1£»
¢Ü2m-1£¬2m-3£¬¡­£¬5£¬3£¬1£¬1£¬3£¬5£¬¡­£¬2m-3£¬2m-1£®
¶ÔÓÚ¢Ù£¬µ±m¡Ý2014ʱ£¬S2014=1+3+5+¡­+£¨2¡Á2014-1£©=20142£®
µ±1500¡Üm¡Ü2013ʱ£¬S2014=1+3+¡­+£¨2m-1£©+£¨2m-3£©+¡­+£¨4m-4029£©=m2+
(2014-m)[(2m-3)+(4m-4029)]
2
=m2+£¨2014-m£©£¨3m-2016£©£®
¶ÔÓÚ¢Ú£¬µ±m¡Ý2014ʱ£¬S2014=20142£®
µ±1500¡Üm¡Ü2013ʱ£¬S2014=m2+£¨2014-m£©£¨3m-2014£©£®
¶ÔÓÚ¢Û£¬µ±m¡Ý2014ʱ£¬S2014=4028m-20142£®
µ±1500¡Üm¡Ü2013ʱ£¬S2014=m2+£¨2014-m£©£¨2016-m£©£®
¶ÔÓڢܣ¬µ±m¡Ý2014ʱ£¬S2014=4028m-20142£®
µ±1500¡Üm¡Ü2013ʱ£¬S2014=m2+£¨2014-m£©2£®
µãÆÀ£º±¾ÌâÒ»µÀж¨ÒåÌ⣬ÕâÑùµÄÌâ×ö·¨ÊÇÑϸñ°´ÕÕ¶¨ÒåÒªÇ󣬽«Æäת»¯ÎªÒÑÖªµÄ֪ʶºÍ·½·¨È¥½â¾ö£¬±¾ÌâÉæ¼°µ½µÈ²îÊýÁеÄͨÏʽ£¬µÈ±ÈÊýÁÐÇóºÍ£¬¹¹ÔìÊýÁеÈ֪ʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸´ÊýzÂú×ãÌõ¼þ£º|2z+1|=|z-i|£¬ÄÇôz¶ÔÓ¦µÄµãµÄ¹ì¼£ÊÇ£¨¡¡¡¡£©
A¡¢Ô²B¡¢ÍÖÔ²C¡¢Ë«ÇúÏßD¡¢Å×ÎïÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx¡Ê£¨0£¬
1
4
£©£¬Ôòy=x
1-4x
µÄ×î´óֵΪ£¨¡¡¡¡£©
A¡¢
1
6
B¡¢
1
4
C¡¢
3
18
D¡¢
3
9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
4
+
y2
3
=1£¬ÔòÒÔµãM£¨-1£¬1£©ÎªÖеãµÄÏÒËùÔÚÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A¡¢3x-4y+7=0
B¡¢3x+4y-1=0
C¡¢4x-3y+7=0
D¡¢4x+3y+1=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax2+£¨b-8£©x-a-ab£¬²»µÈʽf£¨x£©£¾0µÄ½â¼¯Îª{x|-3£¼x£¼2}£®
£¨1£©Çóº¯Êýy=f£¨x£©µÄ½âÎöʽ£®
£¨2£©µ±¹ØÓÚµÄxµÄ²»µÈʽax2+bx+c¡Ü0µÄ½â¼¯ÎªRʱ£¬ÇócµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn=2n2£¬{bn}ΪµÈ±ÈÊýÁУ¬ÇÒa1=b1£¬b2£¨a2-a1£©=b1£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©ÉèCn=
2
an(4-log2bn)
£¬ÇóÊýÁÐ{Cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Èý½ÇÐÎABCºÍÌÝÐÎACEFËùÔ򵀮½Ã滥Ïà´¹Ö±£¬AB¡ÍBC£¬AF¡ÍAC£¬AF
¡Î
.
2CE£¬GÊÇÏß¶ÎBFÉÏÒ»µã£¬AB=AF=BC=2£®
£¨¢ñ£©µ±GB=GFʱ£¬ÇóÖ¤£ºEG¡ÎÆ½ÃæABC£»
£¨¢ò£©Çó¶þÃæ½ÇE-BF-AµÄÓàÏÒÖµ£»
£¨¢ó£©ÊÇ·ñ´æÔÚµãGÂú×ãBF¡ÍÆ½ÃæAEG£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬Èô·½³Ìf£¨x£©=xÎÞʵ¸ù£¬ÇóÖ¤£º·½³Ìf£¨f£¨x£©£©=xÒ²ÎÞʵ¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨cos¦Á£¬-1£©£¬
b
=£¨2£¬1+sin¦Á£©£¬ÇÒ
a
b
=-1
£¨1£©Çótan¦ÁµÄÖµ      
£¨2£©Çótan£¨¦Á+
¦Ð
4
£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸