精英家教网 > 高中数学 > 题目详情
12.在区间[1,5]上任取一个数记为m,在区间[1,4]上任取一个数记为n.
(1)若m,n∈N*,求方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆的概率;
(2)若m,n∈R,求方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆的概率.

分析 (1)m=1,2,3,4,5,n=1,2,3,4,基本事件总数N=5×4=20,方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆,从而m>n,由此利用列举法能求出方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆的概率.
(2)D:$\left\{\begin{array}{l}{1≤m≤5}\\{1≤n≤4}\end{array}\right.$,方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆,(m,n)满足d:$\left\{\begin{array}{l}{1≤m≤5}\\{1≤n≤4}\\{m>n}\end{array}\right.$,由此利用几何概型能求出方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆的概率.

解答 解:(1)∵在区间[1,5]上任取一个数记为m,在区间[1,4]上任取一个数记为n,
m,n∈N*,∴m=1,2,3,4,5,n=1,2,3,4,
∴基本事件总数N=5×4=20,
∵方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆,
∴m>n,满足条件的基本事件(m,n)有10个,分别是:
(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),
∴方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆的概率p1=$\frac{10}{20}$=$\frac{1}{2}$.
(2)∵在区间[1,5]上任取一个数记为m,在区间[1,4]上任取一个数记为n,m,n∈R,
∴D:$\left\{\begin{array}{l}{1≤m≤5}\\{1≤n≤4}\end{array}\right.$,
∵方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆,
∴(m,n)满足d:$\left\{\begin{array}{l}{1≤m≤5}\\{1≤n≤4}\\{m>n}\end{array}\right.$,
∴方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦点在x轴上的椭圆的概率:
p2=$\frac{d的面积}{D的面积}$=$\frac{4×3-\frac{1}{2}×{3}^{2}}{4×3}$=$\frac{5}{8}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法和几何概型的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.三棱锥A-BCD中,E是BC的中点,AB=AD,BD⊥DC
(I)求证:AE⊥BD;
(II)若DB=2DC=$\sqrt{2}$AB=2,且二面角A-BD-C为60°,求AD与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2|cos x|+cos x-$\frac{2}{3}$在区间[0,2π]内的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A${\;}_{10}^{m}$=10×9×8,那么m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足2$\overrightarrow{a}$+$\overrightarrow{b}$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),且$\overrightarrow{b}$•$\overrightarrow{c}$=-18,则$\overrightarrow{a}$•$\overrightarrow{c}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=xlnx-1的零点所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2ax+1(a∈R).
(1)当a=2时,求f(x)在x∈[1,4]上的最值;
(2)当x∈[1,4]时,不等式f(x)≥x-3恒成立,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点和抛物线y2=4$\sqrt{3}$x的焦点相同,且椭圆过点(-$\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆方程;
(2)过点(3,0)的直线交椭圆于A、B两点,P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OP}$(λ≠0,O为原点),当|AB|<$\sqrt{3}$时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知和式$S=\frac{1+2+3+…+n}{n^2}$,当n→+∞时,S无限趋近于一个常数A,则A可用定积分表示为(  )
A.${∫}_{0}^{1}$xdxB.${∫}_{0}^{1}$$\frac{1}{x}$dxC.${∫}_{0}^{1}$$\sqrt{x}$dxD.${∫}_{0}^{1}$x2dx

查看答案和解析>>

同步练习册答案