精英家教网 > 高中数学 > 题目详情
已知复数z满足(z-2)i=1+i(i是虚数单位),则|z|=
 
考点:复数求模,复数代数形式的乘除运算
专题:数系的扩充和复数
分析:求出复数z,然后求解复数的模即可.
解答: 解:(z-2)i=1+i,∴z-2=
1+i
i
,z=2+
(1+i)i
i•i
=2+1-i=3-i,
|z|=
32+(-1)2
=
10

故答案为:
10
点评:本题考查复数的代数形式的混合运算,复数的模的求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
3
x3+
a
2
x2-2x,g(x)=
1
3
x3-
a
2
x2+(a+2)x+
a+1
x
-lnx,(a∈R)
(Ⅰ)当a=3时,x∈[
3
2
,2],求函数f(x)的最大值;
(Ⅱ)当a≥-1时,讨论函数F(x)=f(x)+g(x)的单调性;
(Ⅲ)若过点(0,-
1
3
)可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有
C
m
n+1
种取法.在这
C
m
n+1
种取法中,可以分成两类:一类是取出的m个球全部为白球,共有C
 
0
1
•C
 
m
n
+C
 
1
1
•C
 
m-1
n
=C
 
0
1
•C
 
m
n+1
,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.试根据上述思想化简下列式子:C
 
m
n
+C
 
1
k
•C
 
m-1
n
+C
 
2
k
•C
 
m-2
n
+…+C
 
k
k
•C
 
m-k
n
=
 
(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是抛物线y2=4x上两点,F是抛物线的焦点,O是平面直角坐标系的原点,若S△AOF•S△BOF=1,则
OA
OB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数范围内因式分解x2+4x+5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知q是r的充分条件而不是必要条件,p是r的充分条件,s是r的必要条件,p是s的必要条件.现有下列命题:
①s是p的充要条件;
②r是p的必要条件而不是充分条件;
③q是p的充分条件而不是必要条件;
④r是s的充分条件而不是必要条件;
⑤?q是?s的必要条件而不是充分条件,
则正确命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0),若函数f(x)在区间(1,+∞)上为增函数,则正实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
5
1-2i
的虚部为
 

查看答案和解析>>

同步练习册答案